Week 9 problem solving + equations, + applications

Kinetics, diffusion, dissolution

Dissolution rate of drug crystals

- The Rate is proportional to the total surface area of drug micro-crystals
- Individual area per mass depends on Crystal habit (shape)
- Cubes have the smallest surface area per given volume
- lowest dissolution rate
- Breaking the same amount of substance into smaller particles increases the total surface area,
- For cubes: Total_Area =

Total_Volume/OneCubeEdgeLength

- Increased dissolution rate for smaller ones
- For arbitrary shape micro-crystals:
- Calculate surface area and volume of each microcrystal (v)
- Divide the fixed total Volume by the single-crystal volume
- $N=V_{\text {tot }} v$
- Multiply the Total_Area $=\boldsymbol{a}^{*} \boldsymbol{N}$
- Dissolution rate is proportional to the total surface area

Dissolution rate of crystals

- Q: Three formulations are used to deliver equal amounts of the same drug.
* Formulation \mathbf{X} consists of cubic microcrystals of size $1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m}$
* Formulation \mathbf{Y} features cubic microcrystals of size $0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m}$
* Formulation \mathbf{Z} contains needle-like, elongated microcrystals of size $100 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m}$
- Rank the formulations in the order of increasing dissolution rate:
A. $X<Y<Z$
B. $X<Z<Y$
C. $Y<X<Z$
D. $Y<Z<X$
E. $Z<Y<X$
F. $Z<X<Y$
- Solution:

	X	Y	Z
Xtal dimensions	$1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m}$	$0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m}$	$100 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m}$
Volume per xtal	V	$0.001 \times V$	V
SA per xtal	$A=6 \mu \mathrm{~m}^{2}$	$0.01 \times A$	$\approx 40 \mu \mathrm{~m}^{2} \approx 6.66 \times A$
\# of xtals	N	$1000 \times N$	N
Total SA	$A \times N$	$10 \times A \times N$	$\approx 6.66 A \times N$

- Answer: $\mathrm{X}<\mathrm{Z}<\mathrm{Y}$

Drug absorption in the GI tract

- Let us make the following assumptions:

The surface area of the stomach is $\sim 0.1 \mathrm{~m}^{2}$ and that of the intestine is $\sim 100 \mathrm{~m}^{2}$. The pH in the stomach and the intestine is 2 and 7 , respectively (simplification)

- Q: An acidic drug with the $p K_{A}$ of 4 is taken orally, dissolves in the stomach and spends $\sim 1 \mathrm{hr}$ in the stomach and $\sim 4 \mathrm{hrs}$ in the intestine as it moves through the Gl tract. What percentage of the drug is absorbed in the stomach? What percentage is absorbed in the gut?
- Hint: only neutral drug species are absorbed efficiently
A. 100% in the stomach, negligible in the gut
B. 80% in the stomach, 20% in the gut
C. $50 / 50$
D. 80% in the gut, 20% in the stomach
E. 100% in the gut, negligible in the stomach
- Solution:

$10^{\mathrm{pKa}-\mathrm{pH}}$	Fraction neutral	Time	Area	Total absorbed assuming flux	
Stomach	$10^{4-2}=100$	~ 1	1 hr	$0.1 \mathrm{~m}^{2}$	$\mathrm{~J} \times 1 \times 1 \times 0.1=0.1 \mathrm{~J}$
Intestine	$10^{4-7}=0.001$	~ 0.001	4 hrs	$100 \mathrm{~m}^{2}$	$J \times 0.001 \times 4 \times 100=0.4 \mathrm{~J}$

- Answer: 80% in the gut, 20% in the stomach

Rates of reactions, K

	$0^{\text {th }}$ order	$1^{\text {st }}$ order	$2^{\text {nd }}$ order
Rate law (how fast?)	Fixed time	Exponential decline	
Integrated rate law (extent of the reaction after the given time elapsed)	$[A]=[A]_{0}-k_{0} t$	$[A]=[A]_{0} e^{-k t}$	
Units of \boldsymbol{k}	M s ${ }^{-1}$	s^{-1}	$M^{-1} S^{-1}$
Half-life $\boldsymbol{t}_{1 / 2}$	$\mathrm{t}_{1 / 2}=\mathrm{A}_{0} / 2 \mathrm{k}_{0}$	$\mathrm{t}_{1 / 2}=\ln (2) / \mathrm{k}$	
Examples	Degradation, dissolution at infinite dilution	Elimination, isomer conversion, radioactive decay	1:1 protein-ligand binding

Reaction rate: $\mathbf{1}^{\text {st }}$ order

- Q: Thalidomide undergoes spontaneous conversion from (+) form to (-) form and vice-versa. For example, the half-life of initially pure $(+)$ Thalidomide in human plasma is 11.5 minutes. Estimate the rate constant for the reaction of conversion of (+)Thalidomide into ()Thalidomide in human plasma.
- Hints:
- Enantiomer conversion is 1st order; hence constant $t_{1 / 2}$
- Asks for rate constant (k), not rate ($d[A] / d t=-k[A])$
A. $\quad 11.5 \mathrm{~min}^{-1}$
B. $8.33 \mathrm{~min}^{-1}$
C. $0.001 \mathrm{~s}^{-1}$
D. $\ln 2 \mathrm{~s}^{-1}$
- Solution:
- $t_{1 / 2}=11.5 \mathrm{~min}=690 \mathrm{~s}$
- The rate constant is $k=\ln 2 / t_{1 / 2}=\ln 2 / 690 \sim 0.001 \mathrm{~s}^{-1}$
- A: $0.001 \mathrm{~s}^{-1}$

Reaction rate etc.: $1^{\text {st }}$ order

- Q: lodine-131 decays with the half life of 8 days. At the time of calibration, the activity in the vial is 100 mCi . What will be the remaining activity after 32 days?
A. 96 mCi
B. 31.25 mCi
C. 25 mCi
D. 6.25 mCi
$\mathbf{C i}$ is a Curie unit of radiation
It is $3.7 \times 10^{10} \mathrm{~Bq}$ (disintegrations or nuclear transformations per second).
A Ci is emitted by 1 g of radium- 226 .
- Solution 1:
- The rate constant is $k=\ln 2 / t_{1 / 2}=\ln 2 / 8$ days $=0.0866 \mathrm{~d}^{-1}$
- $[A]=[A]_{0} e^{-k t}=100 \mathrm{mCi} \times \mathrm{e}^{-2.7726}=100 \mathrm{mCi} \times 0.0625=6.25 \mathrm{mCi}$
- Solution 2:
- After 8 days, the remaining activity will be 50 mCi
- After 16 days, 25 mCi
- After 24 days, 12.5 mCi
- After 32 days, 6.25 mCi
- A: 6.25 mCi

Rates vs equilibrium in reversible reactions

- In a reversible reaction, two rates:

One for forward reaction: \boldsymbol{k}_{f}
Another for reverse reaction: \boldsymbol{k}_{r}
Two half-live times depending where one starts

- At equilibrium, $[\mathrm{A}] \boldsymbol{k}_{f}=[\mathrm{B}] \boldsymbol{k}_{r}$

$$
K_{e q}=\frac{k_{f}}{k_{r}}
$$

- A bimolecular reaction of drug-target binding:
$k_{f}=\boldsymbol{k}_{\text {on }}$ (kinetic association constant, not to be confused with equilibrium association constant)
$k_{r}=k_{\text {off }}$ (kinetic dissociation constant, not to be confused with equilibrium dissociation constant)
Equilibrium dissociation constant $K_{d}=\frac{k_{o f f}}{k_{o n}}$
Important parameter: drug residence time

$$
\tau=\frac{1}{k_{o f f}}
$$

Equilibrium vs rates

in a reversible $1^{\text {st }}$ order reaction

- Q: The reversible reaction of drug A binding to its target is characterized by $k_{o n}=8 \times 10^{6} \mathrm{M}^{-1} \mathrm{~min}^{-1}$ and the equilibrium dissociation constant $K_{d}=0.5 \mathrm{nM}$. Find $k_{\text {off }}$ and the drug residence time τ at the target.
A. $k_{\text {off }}=0.004 \mathrm{~min}^{-1}, \tau=4 \mathrm{hr} 10 \mathrm{~min}$
B. $k_{\text {off }}=0.12 \mathrm{~min}^{-1}, \tau=500 \mathrm{sec}$
C. $k_{\text {off }}=1.6 \times 10^{16} \mathrm{~min}^{-1}, \tau=6.25 \times 10^{-15} \mathrm{~min}$
D. Impossible to tell
- Solution: use $K_{d}=\frac{k_{o f f}}{k_{o n}}$ and $\tau=\frac{1}{k_{o f f}}$

$$
\begin{aligned}
& k_{\text {off }}=K_{d} \times k_{\text {on }}=\left(0.5 \times 10^{-9} \mathrm{M}\right) \times\left(8 \times 10^{6} \mathrm{M}^{-1} \mathrm{~min}^{-1}\right)=4 \times 10^{-3} \mathrm{~min}^{-1}=0.004 \mathrm{~min}^{-1} \\
& \tau=1 / \mathrm{k}_{\text {off }}=1 / 0.004=250 \mathrm{~min}
\end{aligned}
$$

- Answer:
$k_{\text {off }}=0.004 \mathrm{~min}^{-1}, \tau=4 \mathrm{hr} 10 \mathrm{~min}$
This is a long-residence-time drug
Often a desirable feature in pharmacology: the target is inhibited for many hours after the dose, regardless of plasma concentration decrease

