
Week 9 problem solving + equations, + applications

Kinetics, diffusion, dissolution

Dissolution rate of drug crystals

- The Rate is proportional to the **total surface area** of drug *micro-crystals*
- Individual area per mass depends on Crystal habit (shape)
- Cubes have the smallest surface area per given volume

 lowest dissolution rate
- Breaking the same amount of substance into smaller particles increases the total surface area,
- For cubes: Total_Area = Total_Volume/OneCubeEdgeLength
 - Increased dissolution rate for smaller ones
 - For arbitrary shape micro-crystals:
 - Calculate surface *a*rea and volume of each microcrystal (*v*)
 - Divide the fixed total Volume by the single-crystal volume
 N = V_{tot}/v
 - Multiply the *Total_Area = a*N*
 - Dissolution rate is proportional to the total surface area

Dissolution rate of crystals

- **Q:** Three formulations are used to deliver **equal amounts** of the same drug.
 - * Formulation X consists of cubic microcrystals of size $1\mu m \times 1\mu m \times 1\mu m$
 - * Formulation Y features cubic microcrystals of size $0.1 \mu m \times 0.1 \mu m \times 0.1 \mu m$
 - Formulation Z contains needle-like, elongated microcrystals of size 100μm×0.1μm×0.1μm
- Rank the formulations in the order of increasing dissolution rate:
 - A. X < Y < Z
 - B. X < Z < Y
 - C. Y < X < Z
 - D. Y < Z < X
 - E. Z < Y < X
 - $F. \quad Z < X < Y$
- Solution:

	X	Y	Z	
Xtal dimensions	1µm × 1µm×1µm	$0.1 \mu m imes 0.1 \mu m imes 0.1 \mu m$	$100\mu m imes 0.1\mu m imes 0.1\mu m$	
Volume per xtal	V	0.001×V	V	
SA per xtal	<i>A</i> = 6μm²	0.01×A	$pprox 40 \mu m^2 pprox 6.66 imes A$	
# of xtals	Ν	1000×N	Ν	
Total SA	A×N	$10 \times A \times N$	\approx 6.66A \times N	

• **Answer:** X < Z < Y

Drug absorption in the GI tract

- Let us make the following assumptions: The surface area of the stomach is ~0.1 m² and that of the intestine is ~100 m². The pH in the stomach and the intestine is 2 and 7, respectively (simplification)
- Q: An acidic drug with the *pK_A* of 4 is taken orally, dissolves in the stomach and spends ~ 1hr in the stomach and ~4 hrs in the intestine as it moves through the GI tract. What percentage of the drug is absorbed in the stomach? What percentage is absorbed in the gut?
- *Hint:* only neutral drug species are absorbed efficiently
 - A. 100% in the stomach, negligible in the gut
 - B. 80% in the stomach, 20% in the gut
 - C. 50/50
 - D. 80% in the gut, 20% in the stomach
 - E. 100% in the gut, negligible in the stomach
- Solution:

	10 ^{pKa-pH}	Fraction neutral	Time	Area	Total absorbed assuming flux J		
Stomach	$10^{4-2} = 100$	~1	1 hr	0.1 m ²	$m{J} imes 1 imes 1 imes 0.1$ = 0.1 $m{J}$		
Intestine	104-7=0.001	~0.001	4 hrs	100 m ²	$m{J} imes 0.001 imes 4 imes 100 = 0.4 \ m{J}$		

• Answer: 80% in the gut, 20% in the stomach

Rates of reactions, K

	0 th order	1 st order	2 nd order				
Rate law (how fast?)	Fixed time	Exponential decline					
Integrated rate law (extent of the reaction after the given time elapsed)	$[A] = [A]_0 - k_0 t$	$[A] = [A]_0 e^{-kt}$					
Units of k	M s ⁻¹	S ⁻¹	M ⁻¹ s ⁻¹				
Half-life t_{γ_2}	$t_{1/2} = A_0 / 2k_0$	$t_{1/2} = \ln(2)/k$					
Examples	Degradation, dissolution at infinite dilution	Elimination, isomer conversion, radioactive decay	1:1 protein-ligand binding				

Reaction rate: 1st order

- Q: Thalidomide undergoes spontaneous conversion from (+) form to (-) form and vice-versa. For example, the half-life of initially pure (+)Thalidomide in human plasma is 11.5 minutes. Estimate the rate constant for the reaction of conversion of (+)Thalidomide into (-)Thalidomide in human plasma.
- Hints:
 - Enantiomer conversion is 1st order; hence constant $t_{1/2}$
 - Asks for rate constant (k), not rate (d[A]/dt = -k[A])
 - A. 11.5 min⁻¹
 - B. 8.33 min⁻¹
 - C. 0.001 s⁻¹
 - D. In 2 s⁻¹
- Solution:
 - $t_{1/2} = 11.5 \text{ min} = 690 \text{ s}$
 - The rate constant is $k = \ln 2 / t_{1/2} = \ln 2 / 690 \sim 0.001 \text{ s}^{-1}$
- **A:** 0.001 s⁻¹

Reaction rate etc.: 1st order

- **Q:** Iodine-131 decays with the half life of 8 days. At the time of calibration, the activity in the vial is 100 mCi. What will be the remaining activity after 32 days?
 - A. 96 mCi
 - B. 31.25 mCi
 - C. 25 mCi
 - D. 6.25 mCi

Ci is a **Curie** unit of radiation It is 3.7 x 10¹⁰ Bq (disintegrations or nuclear transformations per second). A Ci is emitted by 1 g of radium-226.

- Solution 1:
 - The rate constant is $k = \ln 2 / t_{1/2} = \ln 2 / 8$ days = 0.0866 d⁻¹
 - $[A] = [A]_0 e^{-kt} = 100 \text{ mCi} \times e^{-2.7726} = 100 \text{ mCi} \times 0.0625 = 6.25 \text{ mCi}$
- Solution 2:
 - After 8 days, the remaining activity will be 50 mCi
 - After 16 days, 25 mCi
 - After 24 days, 12.5 mCi
 - After 32 days, 6.25 mCi
- **A:** 6.25 mCi

Rates vs equilibrium in reversible reactions

- In a reversible reaction, two rates:
 One for forward reaction: k_f
 Another for reverse reaction: k_r
 Two half-live times depending where one starts
- At equilibrium, $[A]k_f = [B]k_r$

$$K_{eq} = \frac{k_f}{k_r}$$

• A bimolecular reaction of drug-target binding:

 $k_f = \mathbf{k}_{on}$ (kinetic association constant, not to be confused with equilibrium association constant)

 $k_r = \mathbf{k_{off}}$ (kinetic dissociation constant, not to be confused with equilibrium dissociation constant)

Equilibrium dissociation constant $K_d = \frac{k_{off}}{k_{on}}$

Important parameter: drug residence time

$$\tau = \frac{1}{k_{off}}$$

Equilibrium vs rates in a reversible 1st order reaction

- **Q:** The reversible reaction of drug A binding to its target is characterized by $k_{on}=8\times10^6$ M⁻¹ min⁻¹ and the equilibrium dissociation constant $K_d=0.5$ nM. Find k_{off} and the drug residence time τ at the target.
 - A. $k_{off} = 0.004 \text{ min}^{-1}$, $\tau = 4 \text{ hr} 10 \text{ min}$
 - B. $k_{off} = 0.12 \text{ min}^{-1}$, $\tau = 500 \text{ sec}$
 - C. $k_{off} = 1.6 \times 10^{16} \text{ min}^{-1}$, $\tau = 6.25 \times 10^{-15} \text{ min}^{-1}$
 - D. Impossible to tell
- Solution: use $K_d = \frac{k_{off}}{k_{on}}$ and $\tau = \frac{1}{k_{off}}$ $k_{off} = K_d \times k_{on} = (0.5 \times 10^{-9} \text{ M}) \times (8 \times 10^6 \text{ M}^{-1} \text{ min}^{-1}) = 4 \times 10^{-3} \text{ min}^{-1} = 0.004 \text{ min}^{-1}$ $\tau = 1/k_{off} = 1/0.004 = 250 \text{ min}$
- Answer:

 k_{off} = 0.004 min⁻¹, τ = 4hr 10 min This is a **long-residence-time** drug

Often a desirable feature in pharmacology: the target is inhibited for many hours after the dose, regardless of plasma concentration decrease