Week 8 problem solving + equations, + applications

Ionization of acids and bases LogD, pH of drug solutions, Solubility, prodrugs

Find groups that can become negatively charged under physiological conditions (pH 2-7)

- A. Amphetamine
- B. Menthol
- C. Salicylic acid
- D. Clodronic acid
- E. Aminohippuric acid
- F. Guanadrel

Salicylic acid

HO

pKa ≈

Clodronic acid

Find groups that can become negatively charged under physiological conditions (pH 2-7)

- A. Amphetamine
- B. Menthol
- C. Salicylic acid
- D. Clodronic acid
- E. Aminohippuric acid
- F. Guanadrel

HO

Salicylic acid

Clodronic acid (a 1st gen bisphosphonate)

Aminohippuric acid (used as a diagnostic agent for renal plasma flow)

Amphoteric or zwitterionic? Predominant species as pH increases?

- Problem: Aminohippurate has a basic group with pKa of 4.6 and an acidic group with pKa of 3.8. What is the order or predominant species of aminohippurate in solution as the pH increases from 2 to 11?
 - A. (+) \rightarrow neutral \rightarrow (-)
 - B. (+) \rightarrow zwitterion \rightarrow (-)
 - C. $(+) \rightarrow (-)$
 - D. (-) \rightarrow neutral \rightarrow (+)
 - E. (-) \rightarrow zwitterion \rightarrow (+)
 - $\mathsf{F}. \quad (\mathsf{-}) \to (\mathsf{+})$
- Solution:

	рН < 3.8	3.8 ≤ pH ≤ 4.6	рН > 4.6
Amine	(+)	(+)	Neutral
Carboxylate	neutral	(-)	(-)
Answer: $(+) \rightarrow$	zwitterion \rightarrow (-)		

Ratio vs fraction of negatively charge species vs neural (or total)

[A ⁻]/[AH]	%[A⁻]
$10^{-3} = 0.001$	0.001/(1+0.001) ~ 0.1%
$10^{-2} = 0.01$	0.01/(1+0.01) ~ 0. 99%
$10^{-1} = 0.1$	0.1/(1+0.1) ~ 9.09%
$10^{0} = 1$	1/(1+1) = 50%
$10^1 = 10$	10/(10+1) ~ 90.91%
$10^2 = 100$	100/(100+1) ~ 99.01 %
$10^3 = 1000$	1000/(1000+1) ~ 99.9%

If [A ⁻]/[AH] = R	then %[A ⁻] = R/(1+R)
-------------------------------	-----------------------------------

Henderson-Hasselbalch equation

- Problem: An acidic drug with pK_A of 3.5 is dissolved in stomach at pH=2. What fraction of the drug molecules is ionized/?
 - A. 100%
 - B. 66%
 - C. 3%
 - D. 0.0316%
- Solution: log([A-]/[AH]) = pH-pK_A = -1.5
 [A-] = 0.0316[AH]
 fraction ionized is 0.0316/(1+0.0316) ~ 3%
- Answer: Only about 3% is ionized.
- **Bonus Q:** How and where will this drug absorb?

Week 8 problem solving + equations, + applications

Solubility of ionizable substances

Solubility at different pH: buffer

In a saturated solution of an ionizable substance:

	Acid	Base
HH. equation	$Log([A^-]/[AH]) = pH - pK_A$	$Log([B]/[BH^+]) = pH - pK_A$
S ₀ : solubility of neutral form	$[AH] = S_0$	$[B] = S_0$
All ionized species are soluble	$[A^{-}] = S - S_{0}$	$[BH^+] = S - S_0$
	$Log((S-S_0)/S_0) = pH - pK_A$	$Log((S-S_0)/S_0) = pK_A - pH$
	$(S-S_0)/S_0 = 10^{pH-pK_A}$	$(S-S_0)/S_0 = 10^{pK_A-pH}$
	S = S ₀ (1+10 ^{pH-pK_A})	S = S ₀ (1+10 ^{pK_A-pH})

- Caution:
 - pH is affected by a high concentration of acid/base...
 - Approximation is only accurate for buffered solutions when S–S₀ << β (buffer capacity)

Solubility at different pH

- Problem: The saturation solubility of a drug at different pH and T=300K are shown in the table. What type of compound is it and what is pK_A?
 - A.Acid, pK_A of 3pHB.Acid, pK_A of 57.4C.Base, pK_A of 8910
 - D. Base, pK_A of 9

рН	Saturation solubility
7.4	205 μM
9	10 µM
10	5.5 μM
12	5 μM

- Solution: Solubility↓ with pH↑ ⇒ it is a base Solubility at pH = 12 is ~ S₀ pK_A = pH + log (S-S₀)/S₀ When using S=205 µM at pH=7.4, pK_A=7.4+log 200/5~9 When using S=10 µM at pH=9, pK_A=9+log 5/5=9
- Answer: Base, pKa of 9

Ionizable drugs are often formulated as salts

- Commonly used salts:
 - Weak acid / strong base
 - Weak base / strong acid
 - Weak acid / weak base
- Salt formulations affect solubility

Salts deliver ionized components into the solution; the pH variations are favorable for dissolution

* Crystal state interactions vary between salts and free form

Drug	Acid	рК _А	Base	рК _А
Divalproex Sodium	Valproate [–]	4.8	Na ⁺	-
Penicillin G Potassium	Penicillin G [–]	2.7	K+	_
Chlorpromazine HCl	CI⁻	_	Chlorpromazine H ⁺	9.3
Codeine Phosphate	PO ₄ ⁻	2.2,7.2,12.3	Codeine H ⁺	8.2
Dramamine	8-Chlorotheophylline ⁻	4.6	Diphenhydramine H ⁺	9.0

LogD

- Problem: Ibuprofen is a weak acid with pK_A of 4.91. The logP value for the neutral form of ibuprofen is 3.5. Calculate logD of ibuprofen at pH 3 in the stomach and pH 7 in the bloodstream.
 - A. pH 3: logD = 3.5; pH 7: logD = 1.4
 - B. pH 3: logD = 1.4; pH 7: logD = 3.5
 - C. pH 3: logD = -1.4; pH 7: logD = 4.9
 - D. pH 3: logD = -4.9; pH 7: logD = 7

• Solution:

Bloodstream: pH = 7 is greater than pKa + 1, therefore, the linear approximation can be used:

✤ logD = logP - (pH - pKa) = 3.5 - (7 - 4.91) = 1.41

Stomach: pH = 3 is not greater than pKa + 1, the linear approximation cannot be used:

♦ $\log D = \log P - \log(1 + 10^{pH - pK_A}) = 3.5 - \log(1 + 10^{-1.91}) = 3.495 \approx 3.5$

(optional, supplementary)

pH of a drug solution – practical, linear approximations

Weak Acid, e.g. carboxylic acid: pH = ½ pK_A - ½ log c

Weak Base, e.g. amine pH = 7 + ½ pK_A + ½ log c

pH of a drug solution: linear approximation

(optional, supplementary)

- **Problem:** calculate pH of 1 mM solution of ibuprofen in water (ibuprofen is a weak acid with pK_A of 4.91)
 - A. 0.955
 - B. 3.955
 - C. 4.91
 - D. 5.455
- Solution:
 - concentration is relatively high, acid is weak, try linear approximation
 - $pH = \frac{1}{2} pK_A \frac{1}{2} \log c = 4.91 / 2 + 3 / 2 = 3.955$
 - this pH is less than pK_A; likely accurate
- **Answer:** pH = 3.955