Week 8 problem solving + equations, + applications

Ionization of acids and bases LogD, pH of drug solutions, Solubility, prodrugs

Find groups that can become negatively charged under physiological conditions (pH 2-7)

A. Amphetamine
B. Menthol
C. Salicylic acid
D. Clodronic acid

E. Aminohippuric acid

Salicylic acid
F. Guanadrel

Find groups that can become negatively charged under physiological conditions (pH 2-7)

A. Amphetamine
B. Menthol
C. Salicylic acid
D. Clodronic acid

Amphetamine
E. Aminohippuric acid

Menthol

Salicylic acid
F. Guanadrel

Clodronic acid (a $1^{\text {st }}$ gen bisphosphonate)

Aminohippuric acid (used as a diagnostic agent for renal plasma flow)

Amphoteric or zwitterionic?

Predominant species as pH increases?

- Problem: Aminohippurate has a basic group with pKa of 4.6 and an acidic group with pKa of 3.8. What is the order or predominant species of aminohippurate in solution as the pH increases from 2 to 11?
A. $\quad(+) \rightarrow$ neutral $\rightarrow(-)$
B. $(+) \rightarrow$ zwitterion $\rightarrow(-)$
C. $\quad(+) \rightarrow(-)$
D. $(-) \rightarrow$ neutral $\rightarrow(+)$
E. $(-) \rightarrow$ zwitterion $\rightarrow(+)$
F. $\quad(-) \rightarrow(+)$

- Solution:

	$\mathrm{pH}<3.8$	$3.8 \leq \mathrm{pH} \leq 4.6$	$\mathrm{pH}>4.6$
Amine	$(+)$	$(+)$	Neutral
Carboxylate	neutral	$(-)$	$(-)$

- Answer: $(+) \rightarrow$ zwitterion $\rightarrow(-)$

Ratio vs fraction of negatively charge species vs neural (or total)

$\left[\mathrm{A}^{-}\right] /[\mathrm{AH}]$	$\%\left[\mathrm{~A}^{-}\right]$
$10^{-3}=0.001$	$0.001 /(1+0.001) \sim 0.1 \%$
$10^{-2}=0.01$	$0.01 /(1+0.01) \sim 0.99 \%$
$10^{-1}=0.1$	$0.1 /(1+0.1) \sim 9.09 \%$
$10^{0}=1$	$1 /(1+1)=50 \%$
$10^{1}=10$	$10 /(10+1) \sim 90.91 \%$
$10^{2}=100$	$100 /(100+1) \sim 99.01 \%$
$10^{3}=1000$	$1000 /(1000+1) \sim 99.9 \%$

$$
\text { If }\left[A^{-}\right] /[A H]=R \quad \text { then } \%\left[A^{-}\right]=R /(1+R)
$$

Henderson-Hasselbalch equation

- Problem: An acidic drug with pK_{A} of 3.5 is dissolved in stomach at $\mathrm{pH}=2$. What fraction of the drug molecules is ionized/?
A. 100%
B. 66%
C. 3%
D. 0.0316%
- Solution: $\log ([A-] /[A H])=p H-p K_{A}=-1.5$

$$
[\mathrm{A}-]=0.0316[\mathrm{AH}]
$$

fraction ionized is $0.0316 /(1+0.0316) \sim 3 \%$

- Answer: Only about 3\% is ionized.
- Bonus Q: How and where will this drug absorb?

Week 8 problem solving + equations, + applications

Solubility of ionizable substances

Solubility at different pH: buffer

- In a saturated solution of an ionizable substance:

	Acid	Base
H.-H. equation $\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{AH}]\right)=\mathrm{pH}-\mathrm{pK}_{\mathrm{A}}$	$\log \left([\mathrm{B}] /\left[\mathrm{BH}^{+}\right]\right)=\mathrm{pH}-\mathrm{pK}_{\mathrm{A}}$	

S_{0} : solubility
of neutral form

$$
[\mathrm{AH}]=\mathrm{S}_{0}
$$

$$
[\mathrm{B}]=\mathrm{S}_{0}
$$

All ionized
species are soluble

$$
\left[\mathrm{A}^{-}\right]=\mathrm{S}-\mathrm{S}_{0}
$$

$$
\left[\mathrm{BH}^{+}\right]=\mathrm{S}-\mathrm{S}_{0}
$$

$$
\begin{array}{c|c}
\log \left(\left(\mathrm{S}-\mathrm{S}_{0}\right) / \mathrm{S}_{0}\right)=\mathrm{pH}-\mathrm{pK}_{\mathrm{A}} & \log \left(\left(\mathrm{~S}-\mathrm{S}_{0}\right) / \mathrm{S}_{0}\right)=\mathrm{pK}_{\mathrm{A}}-\mathrm{pH} \\
\left(\mathrm{~S}-\mathrm{S}_{0}\right) / \mathrm{S}_{0}=10^{p H-p K_{A}} & \left(\mathrm{~S}-\mathrm{S}_{0}\right) / \mathrm{S}_{0}=10^{\mathrm{pK} \mathrm{~A}_{A}-\mathrm{pH}} \\
\mathrm{~S}=\mathrm{S}_{0}\left(1+10^{\mathrm{pH}-\mathrm{pK} K_{A}}\right) & \mathrm{S}=\mathrm{S}_{0}\left(1+10^{\mathrm{pK} \mathrm{~K}_{A}-\mathrm{pH}}\right)
\end{array}
$$

- Caution:
- pH is affected by a high concentration of acid/base...
- Approximation is only accurate for buffered solutions when $S-S_{0} \ll \beta$ (buffer capacity)

Solubility at different pH

- Problem: The saturation solubility of a drug at different pH and $\mathrm{T}=300 \mathrm{~K}$ are shown in the table. What type of compound is it and what is pK_{A} ?
A. Acid, pK_{A} of 3
B. Acid, pK_{A} of 5
C. Base, pK_{A} of 8
D. Base, pK_{A} of 9

pH	Saturation solubility
7.4	$205 \mu \mathrm{M}$
9	$10 \mu \mathrm{M}$
10	$5.5 \mu \mathrm{M}$
12	$5 \mu \mathrm{M}$

- Solution: Solubility \downarrow with $\mathrm{pH} \uparrow \Rightarrow$ it is a base Solubility at $\mathrm{pH}=12$ is $\sim \mathrm{S}_{0}$ $\mathrm{pK}_{\mathrm{A}}=\mathrm{pH}+\log \left(\mathrm{S}-\mathrm{S}_{0}\right) / \mathrm{S}_{0}$
When using $\mathrm{S}=205 \mu \mathrm{M}$ at $\mathrm{pH}=7.4, \mathrm{pK}_{\mathrm{A}}=7.4+\log 200 / 5^{\sim} 9$
When using $\mathrm{S}=10 \mu \mathrm{M}$ at $\mathrm{pH}=9, \mathrm{pK}_{\mathrm{A}}=9+\log 5 / 5=9$
- Answer: Base, pKa of 9

Ionizable drugs are often formulated as

salts

- Commonly used salts:
*Weak acid / strong base
*Weak base / strong acid
Weak acid / weak base
- Salt formulations affect solubility
* Salts deliver ionized components into the solution; the pH variations are favorable for dissolution
* Crystal state interactions vary between salts and free form

Drug	Acid	pK_{A}	Base	pK_{A}
Divalproex Sodium	Valproate	4.8	Na^{+}	-
Penicillin G Potassium	Penicillin G-	2.7	$\mathrm{~K}^{+}$	-
Chlorpromazine HCl	Cl^{-}	-	Chlorpromazine H^{+}	9.3
Codeine Phosphate	PO_{4}^{-}	$2.2,7.2,12.3$	Codeine H^{+}	8.2
Dramamine	8-Chlorotheophylline		4.6	Diphenhydramine H^{+}

LogD

- Problem: Ibuprofen is a weak acid with pK_{A} of 4.91. The logP value for the neutral form of ibuprofen is 3.5. Calculate logD of ibuprofen at pH 3 in the stomach and pH 7 in the bloodstream.
A. $\mathrm{pH} 3: \log \mathrm{D}=3.5 ; \mathrm{pH} 7: \log \mathrm{D}=1.4$
B. $\mathrm{pH} 3: \log \mathrm{D}=1.4 ; \mathrm{pH} 7: \log \mathrm{D}=3.5$
C. $\mathrm{pH} 3: \log \mathrm{D}=-1.4 ; \mathrm{pH} 7: \log \mathrm{D}=4.9$
D. $\mathrm{pH} 3: \log \mathrm{D}=-4.9 ; \mathrm{pH} 7: \log \mathrm{D}=7$
- Solution:
* Bloodstream: $\mathrm{pH}=7$ is greater than $\mathrm{pKa}+1$, therefore, the linear approximation can be used:

$$
\text { 酋 } \mathrm{D}=\log \mathrm{P}-(\mathrm{pH}-\mathrm{pKa})=3.5-(7-4.91)=1.41
$$

* Stomach: $\mathrm{pH}=3$ is not greater than $\mathrm{pKa}+1$, the linear approximation cannot be used:

$$
\star \log D=\log P-\log \left(1+10^{p H-p K_{A}}\right)=3.5-\log \left(1+10^{-1.91}\right)=3.495 \approx 3.5
$$

pH of a drug solution -

practical, linear approximations
Weak Acid, e.g. carboxylic acid:

$$
\mathrm{pH}=1 / 2 \mathrm{pK}_{\mathrm{A}}-1 / 2 \log c
$$

Weak Base, e.g. amine

$$
\mathrm{pH}=7+1 / 2 \mathrm{pK}_{\mathrm{A}}+1 / 2 \log c
$$

pH of a drug solution:

linear approximation

- Problem: calculate pH of 1 mM solution of ibuprofen in water (ibuprofen is a weak acid with pK_{A} of 4.91)
A. 0.955
B. 3.955
C. 4.91
D. 5.455
- Solution:
- concentration is relatively high, acid is weak, try linear approximation
- $\mathrm{pH}=1 / 2 \mathrm{pK}_{\mathrm{A}}-1 / 2 \log \mathrm{c}=4.91 / 2+3 / 2=3.955$
- this pH is less than pK_{A}; likely accurate
- Answer: $\mathrm{pH}=3.955$

