Week 5 problem solving + equations, + applications

Drug binding: $K_d vs \Delta G, \Delta H, \Delta S$ (in addition to Lecture 9 examples)

Decay, Radioactivity, gamma-rays

K_d calculation from equilibrium concentrations

- Problem: A 4 μM target protein solution is made. Then drug is added to achieve 3:5 molar ratio. In equilibrium 2.33 μM of 1:1 complexes are formed. Find the dissociation constant K_d.
- Solution:
 - The molar ratio of 3:5 means that $[L_{tot}] = 4 \,\mu\text{M} \,\frac{3}{5} = 2.4 \,\mu\text{M}$
 - Since 2.33 μM of complexes was formed, unbound concentrations are:
 - $[P] = [P_{tot}] [PL] = 4 \,\mu\text{M} 2.33 \,\mu\text{M} = 1.67 \,\mu\text{M}$
 - $[L] = [L_{tot}] [PL] = 2.4 \,\mu\text{M} 2.33 \,\mu\text{M} = 0.07 \,\mu\text{M}$
 - $K_d = [P][L] / [PL] = 1.67 \times 0.07 / 2.33 \approx 0.05 \ \mu\text{M} = 50 \ \text{nM}$

K_d to ΔG , $\Delta G = \Delta H - T \Delta S$

• **Problem:** When performed at 300K, an endothermic 1:1 drug/target binding reaction with $K_d = 58$ nM absorbs the molar heat of 1.4 kcal/mol. What is the molar entropy change of this reaction, ΔS^0 ? Steps: 1) K_d to ΔG_0 2) $\Delta H_0=1.4$ 3) $\Delta S_0=..$

• Solution:

- Find molar ΔG_{bind} : $\Delta G = RT \ln Kd = 0.6 \text{ kcal/mol} \times \ln (58 \times 10^{-9}) = -10 \text{ kcal/mol}$
- Molar ΔH_{bind} of +1.4 kcal/mol is given
- $\Delta G = \Delta H T\Delta S$; therefore, $\Delta S = (\Delta H \Delta G) / T = (1.4 + 10 \text{ kcal/mol}) / 300 \text{ K} = 11400 \text{ cal/mol} / 300 \text{ K} =$ **38 \text{ cal/(mol K)** $}$
- In this problem, entropy change upon binding must be positive! Given that ΔH is positive, this is the only way to achieve negative ΔG . It may happen due to hydrophobic nature of binding (the number of water molecules with restricted motion is reduced upon binding).

Week 5 problem solving + equations, + applications

EM radiation, fluorescence, radioactivity

EM bands & photon energies

(Planck constant)

1 eV = 1.6022 ×10⁻¹⁹ J

 $c \approx 3 \times 10^8$ m/s (speed of light)

Wavelength, frequency and energy of a single photon

At room temperature
kT, (energy of one vibration) is equal to

25.8 meV (or milli eV)

To break a chemical bond, one needs at least 20 kT of energy

Range	λ	ν	Photon E, [eV]
Radio	1 m-10 ⁵ km	3 Hz-300 MHz	12.4 feV-1.24 μeV
Microwa ve	1 mm-1 m	0.3-300 GHz	1.24 μeV-1.24 meV
Far IR	15-1000 μm	0.3-20 THz	1.24-82.7 meV
IR	1.5-15 μm	20-200 THz	82.7-827 meV
Near IR	700-1500 nm	200-430 THz	0.83-1.77 eV
VIS	400-700 nm	430-750 THz	1.77-3.1 eV
Near UV	300-400 nm	0.75-1 PHz	3.1-4.13 eV
UV	200-300 nm	1-1.5 PHz	4.13-6.2 eV
Far UV	10-200 nm	1.5-30 PHz	6.2-124 eV
X-ray	0.01-10 nm	30 PHz-30 EHz	0.13-124 keV
Gamma	<10 pm	>30 EHz	>124 keV

Gamma, X-ray and visible Light Radiation: wavelength to frequency

- Problem: The longest wavelength of EM radiation that is needed to break a C=C bond is 200 nm.
- Calculate the frequency of this radiation in Hz
 - A. 1.5 PHz
 - B. 1.5 THz
 - C. 0.66 GHz
 - D. 60 Hz
- Solution:

•
$$v = \frac{c}{\lambda} = \frac{3 \times 10^8 m/s}{2 \times 10^{-7} m} = 1.5 \times 10^{15} Hz = 1.5 \text{ PHz}$$
 T is Tera (12)
P is Peta (15)

• *Answer*: 1.5 PHz

Ultraviolet (UV) radiation: from frequency to photon energy

- The longest wavelength of UV radiation that is needed to break a C=C bond is 200 nm
- Calculate the frequency of this radiation in Hz
- Calculate the energy of a single photon in eV
 - A. 47 meV
 - B. 6.2 eV
 - C. 3.1 keV
 - D. 9.3 MeV
- Solution:
 - Have just found that frequency v = 1.5 PHz
 - $E_{photon} = h v = (4.1357 \times 10^{-15} \text{ eV} \cdot \text{s}) \times (1.5 \times 10^{-15} \text{ Hz}) = 6.2 \text{ eV}$
- Answer: 6.2 eV. , keep in mind that thermal energy at room temperature kT ~ 0.0258 eV

Activity of radiopharmaceuticals

- Counting the *rate of radionuclei disintegration*
- 1 Bq (Becquerel) = 1 event per second = 1 s⁻¹
- 1 Ci (Curie) = 37 GBq = 37.10⁹Bq
- Energy released depends on the specific nuclei and disintegration mode
 - an average value may be associated with each radionuclide and decay mode
- Activity goes down as the radionuclide decays
 - provided values are "at time of calibration"
- Radiopharmaceuticals are prescribed as *activity* in Bq

Sodium lodide (131) Solution	Order#	Lot #:	
	Calibration Date:		
Therapeutic Oral	Calibration Time:		12:00 (MST)
USES: Compounding of Oral Therapeutic Solution or Capsules	Total radioactivity	@ calibration:	GBq
Each mI contains: Carrier-free Na ⁴⁹⁴ I			(mCi)
Inactive Ingredients: 0.05M Sodium Hydroxide and 0.02M Sodium Thiosuffate	Total Volume @ ca	alibration	ml
Store upright in a shielded container at 2°-25° C Calculate dosage from Calibration date	Radioconcentratio	n @ calibration:	GBq/ml
RX Only	Expiration Date:		(mCl/ml)
^{ତ୍ୟ} HALF LIFE= 8.025 DAYS	NDC Code:		
CAUTION	Caution-Radicactive Material		
RADIOACTIVE MATERIALS	Manufactured by International Isotopes, Inc. Idaho Falls. ID		

Table 2. Solution Strengths

Total Radioactivity* per Vial					
Concentration*	Volume of Solution	Total Radioactivity* per Vial			
	1 mL	185 MBq (5 mCi)			
	2 mL	370 MBq (10 mCi)			
185 MBq/mL	3 mL	555 MBq (15 mCi)			
(5 mCi/mL)	4 mL	740 MBq (20 mCi)			
	5 mL	925 MBq (25 mCi)			
	7 mL	1295 MBq (35 mCi)			
	2 mL	1850 MBq (50 mCi)			
925 MBq/mL	3 mL	2775 MBq (75 mCi)			
(25 mCi/mL)	4 mL	3700 MBq (100 mCi)			
	6 mL	5550 MBq (150 mCi)			

Source: FDA * *At time of calibration*

Dosimetry-related quantities

- Radiation source, Exposure: a measure of ionization Electric charge freed by radiation per kg of air 1 R (Roentgen) = 0.000258 C/kg (Coulomb per kg)
- Absorbed dose (energy/body mass):
 - ✤ 1 Gy (gray) = 1 J/kg
 - ✤ 1 rad = 0.01 Gy
 - Depends on the type of matter that absorbs the radiation, e.g. for an exposure of 1 roentgen by 1 MeV γ-rays:
 - the dose in air = 0.877 rad
 - the dose in water = 0.975 rad
 - the dose in averaged human tissue = 0.965 rad

• Dose equivalent:

- Different radiation types have different biological effects for the same deposited energy
- W_R is a corrective radiation weighting factor:
 - dependent on radiation type
 - converts the absorbed dose into an estimate of tissue damage
- 1 Sv (Sievert) = $W_R \times Gy = W_R \times [J/kg]$
- 1 rem (roentgen equivalent man) = 0.01 Sv
- Ionizing radiation is prescribed as absorbed dose in Gy

Activity of radio-pharmaceuticals

Problem: ¹³¹I decay releases energy in the form of β and γ radiation. The average energy release per nucleus is 192 keV for β and 364 keV for γ.

Given a sample of ¹³¹I with total activity of 5 mCi, how much energy does it emit per second in the form of β -radiation? Give your answer in J/s.

- A. 57 kJ/s
- B. 28.4 J/s
- C. 13.2 mJ/s
- D. 5.68 μJ/s
- Solution:
 - 1 Bq = 1 nucleus per second = 1 s⁻¹; 1 Ci = 37 GBq
 - 5 mCi = 0.005 × 37 GBq = 185 MBq (1.85×10⁸ nuclei disintegrate per second) : converting Curie units to Bq units.
 - For β : (1.92×10⁵ eV) × (1.85×10⁸ Bq/s) × (1.6×10⁻¹⁹ J/eV) = 5.68×10⁻⁶ J/s Beta-energy x Number of decays x eV to J conversion
- **Answer:** 5.68 μJ/s