Van t'Hoff Factor

- Problem: When the pharmaceutical formulation of drug X, [X]₂Ca²⁺ is dissolved in water, 30% of the molecules dissociated into three ions, 30% into two ions, and 40% did not dissociate. Calculate the van't Hoff factor for the solution.
 - A. 0.3
 - B. 0.4
 - C. 1
 - D. 1.9
 - E. 2
- Solution:
 - 3×0.3 + 2×0.3 + 1×0.4 = 0.9+0.6+0.4 = 1.9
 - OR: Every 100 molecules will produce $3 \times 30 + 2 \times 30 + 1 \times 40 = 190$ particles.
- **Answer:** the van t'Hoff factor is 1.9 (to be used for calculation of all colligative properties)

Raoult's Law

- Problem: The pure water vapor pressure at 47°C is 0.1 bar. Estimate the vapor pressure when 32 g of NaCl (MW = 58 g/mol) is added to 1 L of water. Assume that the salt is not volatile, but it dissociates completely.
 - A. 0.002 bar
 - B. 0.02 bar
 - C. 0.098 bar
 - D. 0.98 bar
- Solution:
 - 32 g = 32/58 ~ 0.55 mol of salt
 - Dissolved AND DISSOCIATED in 1L = 55 mol of water; van t'Hoff factor of 2
 - Molar fraction of the solute $x \approx 2 \times 0.55 / 55 = 0.02$.
 - Raoult's Law, $\Delta P_w = x_{solute} P_w^* = 0.02 * 0.1 = 0.002$ bar
 - $P_w = P_w^* \Delta P_w = 0.1 0.002 = 0.098$ bar
- **Answer:** The new vapor pressure is ~ 0.098 bar.

Osmotic pressure $\Delta P \sim \Delta M 25$ [atm L/mol]

- Problem: The blood glucose level of a diabetic patient is approximately 0.198 g/dL (dL = 0.1L). Given that glucose MW = 180.16 g/mol, calculate the osmotic pressure created by glucose.
 - A. 0.9 mmHg
 - B. 19 mmHg
 - C. 109 mmHg
 - D. 209 mmHg
- Solution:
 - no dissociation occurs: van t'Hoff factor = 1
 - 0.198 g/dL = 1.98 g/L ~ 11 mM = osmolarity
 - $\Delta P_{osm} = 11 \text{ mOsm/L} \times 25 \text{ L} \text{ atm/mol} = 0.275 \text{ atm} = 209 \text{ mmHg}$
- Answer:
 - 209 mmHg
 - Note that glucose does permeate membranes; the actual ΔP_{osm} due to glucose between plasma and interstitium is lower

Problem solving steps

- Determine the reaction or transition
- Write the chemically balanced equation
- $\Delta G \rightarrow K$
 - Write the equilibrium constant
 - Find the equilibrium constant using
 - If necessary, solve for components

$\Delta G^0 = -RT \ln K$

• $K \rightarrow \Delta G$

- Find the equilibrium constant using
- Find ΔG using
- $[r] \leftrightarrow [p]$
 - Use equilibrium constant K definition from concentrations of reactants and products and stoichiometry

Reaction: phase partition, LogP

• **Reaction** of spontaneous transfer of the compound from non-polar to polar phase

 $C_{wat} \leftrightarrow C_{oct}$

- **Constant**: $K = C_{oct}/C_{H2O}$
- LogP definition (LogP needs to be in a narrow range for compound permeability)
 logP = log₁₀ (C_{oct}/C_{H2O}) : experimental
- K = 10^{logP}
- May need to use molar amt = conc x volume

Phase Partition Equilibrium I

- Problem: 4.02 mmol of a compound with logP = 2.3 is added to a container with 0.5L octanol and 0.5L water. Find the concentrations of the compound in water and octanol after the system equilibrates.
- Solution:
 - ♣ Reaction: Compound in $H_2O \Leftrightarrow$ Compound in Octanol

 \bigstar logP = 2.3 \Rightarrow K = C_{oct} / C_{H2O} = 10^{2.3} \approx 200, so C_{oct} \approx 200×C_{H2O}

	Molar amount	Concentration	Volume
Water	x [mol]	<i>x</i> / 0.5 L = 2 <i>x</i> [M]	0.5 L
Octanol	200<i>x</i> [mol]	200×C _{H2O} = 400 <i>x</i> [M]	0.5 L

- ✤ 20 µmol in water, 4 mmol in octanol
- Concentrations: 20 μmol / 0.5 L = 40 μM in water, 4 mmol / 0.5 L = 8 mM in octanol (sanity check, please?)
- Answer: 40 μ M and 8 mM

Phase Partition Equilibrium II

- Problem: 12.3 μmol of a compound with logP = 2.3 is added to a container with 0.5L octanol and 2.5L water. Find the concentrations of the compound in water and octanol after the system equilibrates.
- Solution:
 - ♣ Reaction: Compound in $H_2O \Leftrightarrow$ Compound in Octanol

 \bigstar logP = 2.3 \Rightarrow K = C_{oct} / C_{H2O} = 10 $^{2.3} \approx$ 200 and C_{oct} \approx 200×C_{H2O}

	Molar amount	Concentration	Volume
Water	x mol	x / 2.5 L = 0.4x M	2.5 L
Octanol	200*(0.5/2.5)= 40 <i>x</i> mol	200×C _{H2O} = 80 <i>x</i> M	0.5 L

- 0.3 μmol in water, 12 μmol in octanol
- Concentrations: 0.3 μmol / 2.5 L = 0.12 μM in water, 12 μmol / 0.5 L = 24 μM in octanol (sanity check, please?)
- Answer: 0.12 μ M and 24 μ M

Phase Partition, K to ΔG

• **Problem:** 4.6 mmol of a compound was added to a container with **1L** octanol and **3L** water. After the system equilibrated, the aqueous concentration of the compound was found to be 0.2 mM. Find the compound logP and molar ΔG of its transition from octanol to water.

• Solution:

	Molar amount	Concentration	Volume
Water	0.2 mM × 3L = 0.6 mmol	0.2 mM	3L
Octanol	4.6 - 0.6 = 4 mmol	4 mmol / 1L = 4mM	1L

logP = log C_{oct} / C_{H2O} = log (4mM / 0.2 mM) = log 20 ~ 1.3

$$\Delta G^{0} = -RT \ln C_{H20}/C_{oct}$$

 $\Delta G^{0} = -0.6 \ln 1/20 = 0.6 \ln 20 = 0.6 \times 3 = 1.8 \text{ kcal/mol} (sanity check?)$

- Answer: logP = 1.3, ΔG^0 (*octanol* \Rightarrow water) = 1.8 kcal/mol
- **Useful hint:** In 20 ~ 3.

Drug stereo-isomers: conformational transition

- Compound has two distinct stereo-isomers, e.g.: (if there is a chiral center) (S) and (R)
 (if there is a double bond) cis- and trans "state A and state B"
- Reaction of spontaneous transition:
 A ⇔ B
- $K = C_B/C_A$ (ratio of two concentrations)

morning sickness

Problem: Isomerisation, ΔG to K

 The Gibbs free energies of formation of two stereoisomers, X and Y, of a compound at T = 300K are G_f (X)=93.2 kcal/mol and G_f(Y) = 96.2 kcal/mol. Estimate the molar fraction of [Y] in the (*equilibrium*) racemic mixture at this temperature.

• Solution:

Reaction Y \Leftrightarrow X $\Delta G = G_f(X) - G_f(Y) = -3$ kcal/mol Find the equilibrium constant, K = [X]/[Y] K = exp ($-\Delta G / RT$) = exp (3 / 0.6) = exp 5 ~ 149 [X]/[Y] ~ 149/1 (sanity check, please?) Molar fraction of Y is [Y]/([Y]+[X]) ~ 1 / 150 **Answer: ~ 1/150**

$$K = \exp\left(-\frac{\Delta G^0}{RT}\right)$$