Van t'Hoff Factor

- Problem: When the pharmaceutical formulation of drug $\mathrm{X},[\mathrm{X}]_{2} \mathrm{Ca}^{2+}$ is dissolved in water, 30% of the molecules dissociated into three ions, 30% into two ions, and 40% did not dissociate. Calculate the van't Hoff factor for the solution.
A. 0.3
B. 0.4
C. 1
D. 1.9
E. 2
- Solution:
- $3 \times 0.3+2 \times 0.3+1 \times 0.4=0.9+0.6+0.4=1.9$
- OR: Every 100 molecules will produce $3 \times 30+2 \times 30+1 \times 40=190$ particles.
- Answer: the van t'Hoff factor is 1.9 (to be used for calculation of all colligative properties)

Raoult's Law

- Problem: The pure water vapor pressure at $47^{\circ} \mathrm{C}$ is 0.1 bar.

Estimate the vapor pressure when 32 g of $\mathrm{NaCl}(\mathrm{MW}=58 \mathrm{~g} / \mathrm{mol})$ is added to 1 L of water. Assume that the salt is not volatile, but it dissociates completely.
A. 0.002 bar
B. 0.02 bar
C. 0.098 bar
D. 0.98 bar

- Solution:
- $32 \mathrm{~g}=32 / 58 \sim 0.55 \mathrm{~mol}$ of salt
- Dissolved AND DISSOCIATED in 1L = 55 mol of water; van t'Hoff factor of 2
- Molar fraction of the solute $x \approx 2 \times 0.55 / 55=0.02$.
- Raoult's Law, $\Delta \boldsymbol{P}_{w}=\boldsymbol{x}_{\text {solute }} \boldsymbol{P}_{w}{ }^{*}=0.02 * 0.1=0.002$ bar
- $P_{w}=P_{w}{ }^{*}-\Delta P_{w}=0.1-0.002=0.098 \mathrm{bar}$
- Answer: The new vapor pressure is ~ 0.098 bar.

Osmotic pressure $\Delta P^{\sim} \Delta \mathrm{M} 25$ [atm L/mol]

- Problem: The blood glucose level of a diabetic patient is approximately $0.198 \mathrm{~g} / \mathrm{dL}(\mathrm{dL}=0.1 \mathrm{~L})$. Given that glucose $\mathrm{MW}=$ $180.16 \mathrm{~g} / \mathrm{mol}$, calculate the osmotic pressure created by glucose.
A. 0.9 mmHg
B. 19 mmHg
C. 109 mmHg
D. 209 mmHg
- Solution:
- no dissociation occurs: van t'Hoff factor $=1$
- $0.198 \mathrm{~g} / \mathrm{dL}=1.98 \mathrm{~g} / \mathrm{L} \sim 11 \mathrm{mM}=$ osmolarity
- $\Delta P_{\text {osm }}=11 \mathrm{mOsm} / \mathrm{L} \times 25 \mathrm{Latm} / \mathrm{mol}=0.275 \mathrm{~atm}=209 \mathrm{mmHg}$
- Answer:
- 209 mmHg
- Note that glucose does permeate membranes; the actual $\Delta P_{o s m}$ due to glucose between plasma and interstitium is lower

Problem solving steps

- Determine the reaction or transition
- Write the chemically balanced equation
- $\Delta \mathrm{G} \rightarrow \mathrm{K}$
- Write the equilibrium constant
- Find the equilibrium constant using

$$
K=\exp \left(-\frac{\Delta G^{0}}{R T}\right)
$$

- If necessary, solve for components
- $\mathrm{K} \rightarrow \Delta \mathrm{G}$
- Find the equilibrium constant using

$$
\Delta G^{0}=-R T \ln K
$$

- Find $\Delta \mathrm{G}$ using
- $[r] \leftrightarrow[p]$
- Use equilibrium constant K definition from concentrations of reactants and products and stoichiometry

Reaction: phase partition, LogP

- Reaction of spontaneous transfer of the compound from non-polar to polar phase

$$
\mathrm{C}_{\text {wat }} \leftrightarrow \mathrm{C}_{\mathrm{oct}}
$$

- Constant: $\mathrm{K}=\mathrm{C}_{\mathrm{oct}} / \mathrm{C}_{\mathrm{H} 2 \mathrm{O}}$
- LogP definition (LogP needs to be in a narrow range for compound permeability) $\log P=\log _{10}\left(\mathrm{C}_{\text {oct }} / \mathrm{C}_{\mathrm{H} 2 \mathrm{O}}\right) \quad$: experimental
- $K=10^{\log P}$

- May need to use molar amt = conc x volume

Phase Partition Equilibrium I

- Problem: 4.02 mmol of a compound with $\log \mathrm{P}=2.3$ is added to a container with 0.5 L octanol and 0.5 L water. Find the concentrations of the compound in water and octanol after the system equilibrates.
- Solution:
* Reaction: Compound in $\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ Compound in Octanol $\% \log \mathrm{P}=2.3 \Rightarrow \mathrm{~K}=\mathrm{C}_{\text {oct }} / \mathrm{C}_{\mathrm{H} 2 \mathrm{O}}=10^{2.3} \approx 200$, so $\mathrm{C}_{\text {oct }} \approx 200 \times \mathrm{C}_{\mathrm{H} 2 \mathrm{O}}$

Molar amount
Water
Octanol

$$
x \text { [mol] }
$$

Concentration
Volume

* $200 x+x=4.02 \mathrm{mmol} \Rightarrow 201 x=4.02 \times 10^{-3} \mathrm{~mol} \Rightarrow x=20 \mu \mathrm{~mol}$
* $20 \mu \mathrm{~mol}$ in water, 4 mmol in octanol
* Concentrations: $20 \mu \mathrm{~mol} / 0.5 \mathrm{~L}=40 \mu \mathrm{M}$ in water, $4 \mathrm{mmol} / 0.5 \mathrm{~L}$ $=8 \mathrm{mM}$ in octanol (sanity check, please?)
- Answer: $40 \mu \mathrm{M}$ and 8 mM

Phase Partition Equilibrium II

- Problem: $12.3 \mu \mathrm{~mol}$ of a compound with $\log \mathrm{P}=2.3$ is added to a container with 0.5 L octanol and 2.5 L water. Find the concentrations of the compound in water and octanol after the system equilibrates.
- Solution:
* Reaction: Compound in $\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ Compound in Octanol
$* \log P=2.3 \Rightarrow K=C_{\text {oct }} / C_{H 2 O}=10^{2.3} \approx 200$ and $C_{\text {oct }} \approx 200 \times \mathrm{C}_{\mathrm{H} 2 \mathrm{O}}$
Molar amount
Concentration
Volume

Water	x mol	$x / 2.5 \mathrm{~L}=0.4 \times \mathrm{M}$	2.5 L
Octanol	$200^{*}(0.5 / 2.5)=40 \times \mathrm{mol}$	$200 \times \mathrm{C}_{\mathrm{H} 2 \mathrm{O}}=80 \times \mathrm{M}$	$\mathbf{0 . 5} \mathrm{L}$

$* 40 x+x=12.3 \mu \mathrm{~mol} \Rightarrow 41 x=12.3 \times 10^{-6} \mathrm{~mol} \Rightarrow x=0.3 \mu \mathrm{~mol}$

* $0.3 \mu \mathrm{~mol}$ in water, $12 \mu \mathrm{~mol}$ in octanol
* Concentrations: $0.3 \mu \mathrm{~mol} / 2.5 \mathrm{~L}=0.12 \mu \mathrm{M}$ in water, $12 \mu \mathrm{~mol} / 0.5$ $\mathrm{L}=24 \mu \mathrm{M}$ in octanol (sanity check, please?)
- Answer: $0.12 \mu \mathrm{M}$ and $24 \mu \mathrm{M}$

Phase Partition, K to ΔG

- Problem: 4.6 mmol of a compound was added to a container with 1L octanol and 3L water. After the system equilibrated, the aqueous concentration of the compound was found to be 0.2 mM . Find the compound $\log P$ and molar ΔG of its transition from octanol to water.
- Solution:

Molar amount

Concentration

Volume

Water	$0.2 \mathrm{mM} \times 3 \mathrm{~L}=0.6 \mathrm{mmol}$	$\mathbf{0 . 2} \mathbf{~ m M}$	$\mathbf{3 L}$
Octanol	$4.6-0.6=4 \mathrm{mmol}$	$4 \mathrm{mmol} / 1 \mathrm{~L}=4 \mathrm{mM}$	$\mathbf{1 L}$
$\log \mathrm{P}=\log \mathrm{C}_{\text {oct }} / \mathrm{C}_{\mathrm{H} 2 \mathrm{O}}=\log (4 \mathrm{mM} / 0.2 \mathrm{mM})=\log 20 \sim 1.3$			
$\Delta G^{0}=-R T \ln \mathrm{C}_{\mathrm{H} 20} / \mathrm{C}_{\text {oct }}$			
$\Delta G^{0}=-0.6 \ln 1 / 20=0.6 \ln 20=0.6 \times 3=1.8 \mathrm{kcal} / \mathrm{mol}$ (sanity check?)			

- Answer: $\log P=1.3, \Delta G^{0}$ (octanol \Rightarrow water $)=1.8 \mathrm{kcal} / \mathrm{mol}$
- Useful hint: In $20 \sim 3$.

Drug stereo-isomers: conformational transition

- Compound has two distinct stereo-isomers, e.g.:
(if there is a chiral center) (S) and (R)
(if there is a double bond) cis- and trans-
"state A and state B"
- Reaction of spontaneous transition:
$A \Leftrightarrow B$
- $K=C_{B} / C_{A}$ (ratio of two concentrations)

Cis- and Trans- isomers:

(S)-thalidomide Teratogenic

(R)-thalidomide Safe, effective against morning sickness

Problem: Isomerisation, $\Delta \mathbf{G}$ to K

- The Gibbs free energies of formation of two stereoisomers, X and Y , of a compound at $\mathrm{T}=300 \mathrm{~K}$ are G_{f} $(X)=93.2 \mathrm{kcal} / \mathrm{mol}$ and $G_{f}(Y)=96.2 \mathrm{kcal} / \mathrm{mol}$. Estimate the molar fraction of $[\mathrm{Y}]$ in the (equilibrium) racemic mixture at this temperature.
- Solution:

Reaction $Y \Leftrightarrow X$

$$
K=\exp \left(-\frac{\Delta G^{0}}{R T}\right)
$$

$\Delta G=G_{f}(X)-G_{f}(Y)=-3 \mathrm{kcal} / \mathrm{mol}$
Find the equilibrium constant, $\mathrm{K}=[\mathrm{X}] /[\mathrm{Y}]$
$\mathrm{K}=\exp (-\Delta G / R T)=\exp (3 / 0.6)=\exp 5 \sim 149$
$[\mathrm{X}] /[\mathrm{Y}]$ ~ 149/1 (sanity check, please?)
Molar fraction of Y is $[\mathrm{Y}] /([\mathrm{Y}]+[\mathrm{X}]) \sim 1 / 150$

Answer: ~ 1/150

