Week 2 problem solving

Heat Capacity (total, molar) Enthalpy of Drug Binding

Enthalpy of Crystal Dissolution

Heat capacity, $C=q / \Delta T$

- How much heat is needed for a 10 K increase?
- Substances with fewer atoms have low molar heat capacity
- C is measured in J/K or cal/K, or derivative units (extensive)
- Where does the heat come from?
- Internal (from a reaction in which Enthalpy changes)
- External source
- Normalized Heat Capacity (per mole, mass, volume)
- Introduce heat capacity per unit amount of sample
- specific heat is per 1 kg of mass $C[\mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})]$, or $[\mathrm{J} /(\mathrm{g} \cdot \mathrm{K}]$
- molar heat capacity is per mole C [J/(mol $\cdot \mathrm{K})]$
- What is the heat capacity (specific heat) of water?
- At STP, $C_{H 2 O}=1 \mathrm{cal} /(\mathrm{g} \cdot \mathrm{K})=4.1813 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$

Heat content vs $\Delta T: q=C \Delta T$ or $C=q / \Delta T$

- Problem: Specific heats of ethanol and water at STP are equal to $2.44 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$ and $4.18 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$, respectively. Their densities are $0.8 \mathrm{~g} / \mathrm{cm}^{3}$ and $1 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. Compare temperature increases of 1 mL samples of ethanol and water after $1 \mathrm{cal}=4.18 \mathrm{~J}$ of heat is transferred to them.
A. $\Delta T\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=\Delta T\left(\mathrm{H}_{2} \mathrm{O}\right)$
B. $\Delta T\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=\Delta T\left(\mathrm{H}_{2} \mathrm{O}\right) \times 1.71$
C. $\Delta T\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=\Delta T\left(\mathrm{H}_{2} \mathrm{O}\right) \times 2.14$

Q1: weight of 1 mL ?
Q2: C of 1 m ?
($\mathrm{c}_{\mathrm{p}}{ }^{*}$ mass)
Q3: $\Delta T=q / C$

- Solution:
- 1 mL of water $=1 \mathrm{~g} \Rightarrow$ total C of 1 mL water is $4.18 \mathrm{~J} / \mathrm{K}$
- 1 mL of ethanol $=0.8 \mathrm{~g} \Rightarrow \mathrm{C}$ of 1 mL ethanol is $0.8 \times 2.44=$ $1.95 \mathrm{~J} / \mathrm{K}$
- $\Delta \mathrm{T}$ for water $=\mathrm{q} / \mathrm{C}_{\text {water }}=4.18 \mathrm{~J} / 4.18 \mathrm{~J} / \mathrm{K}=1 \mathrm{~K}$
- $\Delta \mathrm{T}$ for ethanol $=\mathrm{q} / \mathrm{C}_{\text {ethanol }}=4.18 \mathrm{~J} / 1.95 \mathrm{~J} / \mathrm{K}=2.14 \mathrm{~K}$

C_{p} and C_{v} heat capacities

At const. volume, \boldsymbol{C}_{V}

- The system does not perform work
- All heat transferred to the system is added to its internal energy and translates into T increase

$$
q=\Delta U=C_{V} \Delta T
$$

Isobaric: at constant pressure: $\boldsymbol{C}_{\boldsymbol{P}}$

- The system may perform work
* E.g. if gas is produced in the reaction and allowed to expand
- Heat transferred to the system is spent in two ways :
* partially on work
* partially on T increase

$$
\boldsymbol{q}=\Delta H=\Delta U+P \Delta V=\boldsymbol{C}_{\boldsymbol{P}} \Delta \boldsymbol{T}
$$

- T increase is lower than it would be w/o work
- $C_{P}>C_{V}$, by $P \Delta V / \Delta T$:

Liquids and solids: $P \Delta V \approx 0$

$$
C_{P} \approx C_{V}
$$

* Ideal gas: work $=P \Delta V=n R \times \Delta T$

Per mole, $\boldsymbol{C}_{P} \approx \boldsymbol{C}_{V}+\boldsymbol{R}$

Heat capacities of common substances

| Substance | Phase | Isobaric
 specific heat
 capacity
 C_{P} | Isobaric
 molar heat
 capacity
 $C_{P, m}$ |
| :---: | :---: | :---: | :---: | :---: |
| Oxygen | gas | 0.918 | |
| Carbon dioxide CO_{2} | gas | 0.839 | 29.38 |
| $\mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ | | | |$|$

Reaction/transition thermochemistry

- Enthalpy change (ΔH) in a reaction or transition: Reactants $(\mathbf{R}) \Rightarrow$ Products (\mathbf{P})
- Heat of reaction is defined by enthalpy change
- $\Delta H=H$ (products) $-H$ (reactants)
- $\Delta H<0$ means " \Rightarrow " is exothermic (produces heat)
- $\Delta H>0$ means " \Rightarrow " is endothermic (absorbs heat)
- Heat can be measured in a (micro)calorimeter, and used to:
- Characterize the reaction (Endothermic/exothermic? Molar ΔH^{0} ? Strength and number of bonds vs ΔH^{0} sign)
- Find the extent of reaction from $\Delta \mathrm{H}$ and $\Delta \mathrm{H}^{0}$ (how much product is formed?)

Exothermic vs endothermic

- Problem: Calorimetric data on binding of several anti-HIV drugs to their common target, HIV protease, at $\mathrm{T}=300 \mathrm{~K}$ is presented in the table. For how many drugs in the list, is the binding reaction endothermic?
A. 1
B. 2
C. 3
D. 4
E. 5
F. 6

Drug	ΔH binding (kcal/mol)
Nelfinavir	3.1
Indinavir	1.8
Saquinavir	1.2
Tipranavir	-0.7
Lopinavir	-3.8
Atazanavir	-4.2
Ritonavir	-4.3
Amprenavir	-6.9
Darunavir	-12.7

- Answer: 3 drugs. Endothermic means $\Delta \mathrm{H}>0$, which is the case for Indinavir, Saquinavir, and Nelfinavir

(Quantitative) $\Delta \mathrm{H}$ of reaction/transition

Reaction	Equation	$\Delta \mathrm{H}_{\mathrm{m}}$ (react) = molar $\Delta \mathrm{H}($ react $)=$ heat produced/absorbed when...
Dissolution	$\mathrm{D}_{\text {solid }}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{D}_{\mathrm{aq}}$	1 mole of drug/substance dissolves in infinite amount of water
Neutralization	$\mathrm{OH}^{-}+\mathrm{H}^{+} \leftrightarrow \mathrm{H}_{2} \mathrm{O}$	1 mole of OH^{-}interacts with 1 mole of H^{+} to form 1 mole of $\mathrm{H}_{2} \mathrm{O}$
$1: 1$ protein/ligand binding	$\mathrm{P}+\mathrm{L} \leftrightarrow \mathrm{PL}$	1 mole of L binds to 1 mole of P to form 1 mole of PL complex

- $\Delta H($ react $)=\Delta H_{m}($ react $) \times n_{\text {moles }}$
- n is the extent of reaction:
- Dissolution: $n=$ amount of substance dissolved
- Neutralization: $n=$ amount of limiting reactant
- Protein/ligand binding: $\boldsymbol{n}=$ amount of complex (not necessarily equal to limiting reactant!)
- $n=\Delta H / \Delta H_{m}$

Acid-base neutralization heat

Reaction: $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq})$--> $\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ Energy

- Problem: Molar enthalpy of neutralization reaction between HCl and NaOH at $25^{\circ} \mathrm{C}$ is $-55.9 \mathrm{~kJ} / \mathrm{mol}$. When 25 mmol HCl was added to 10 ml of NaOH solution in a calorimeter, the evolved heat was measured to be 1 kJ . What was the concentration of NaOH in the solution?
A. 25 mM
B. 25 M
C. 0.55 M
D. 1.79 M
E. $\quad 17.9 \mathrm{mM}$
- Solution: If 25 mmol of HCl were completely neutralized by $\mathrm{NaOH}, \Delta \mathrm{H}$ would be equal to $0.025 \mathrm{~mol} \times-55.9 \mathrm{~kJ} / \mathrm{mol} \approx-1.4 \mathrm{~kJ}$. However, we only observed heat of 1 kJ .
- NaOH was a limiting reactant
- Only $1 / 55.9=0.0179 \mathrm{~mol}(17.9 \mathrm{mmol})$ of reaction products was formed
- Therefore 17.9 mmol NaOH was present in the solution in the beginning
- This corresponds to NaOH concentration of $1.79 \mathrm{M}(17.9 \mathrm{mmol} / 10 \mathrm{~mL}=1.79 \mathrm{~m} / \mathrm{L})$.
- Answer: 1.79 M
- Note: Acid/base neutralization involves formation of $\mathrm{H}_{2} \mathrm{O}$ from OH - and $\mathrm{H}+$; covalent bonds are formed, exothermic.

Protein-ligand binding equilibrium

Enthalpy of drug binding - I

- Problem: 0.3 mL of 1 mM solution of a drug is added to a tube with a protein solution. Some of the drug reacts with the protein to form 1:1 protein-drug complex. The reaction produces heat of -2.4×10^{-3} cal. Estimate molar enthalpy of binding ΔH_{m}.
A. $\quad-8 \mathrm{kcal} / \mathrm{mol}$
B. $-12 \mathrm{kcal} / \mathrm{mol}$
C. $24 \mathrm{kcal} / \mathrm{mol}$
D. $3.6 \times 10^{-3} \mathrm{cal} / \mathrm{mol}$
E. impossible to tell because the extent of reaction is not known
- Solution: The total molar amount of drug is $0.310^{-3} \mathrm{~L} \times 10^{-3} \mathrm{~mol} / \mathrm{L}=$ $0.3 \mu \mathrm{~mol}$ - but how much of it is bound to the protein? And how much product (complex) was formed, in moles?
- If $n=0.3 \mu \mathrm{~mol}, \Delta H_{m}=\Delta H / n=-2.4 \times 10^{-3} \mathrm{cal} /\left(0.3 \times 10^{-6} \mathrm{~mol}\right)=-8 \mathrm{kcal} / \mathrm{mol}$
- If $n=0.2 \mu \mathrm{~mol}, \Delta H_{m}=\Delta H / n=-2.4 \times 10^{-3} \mathrm{cal} /\left(0.2 \times 10^{-6} \mathrm{~mol}\right)=-12 \mathrm{kcal} / \mathrm{mol}$
- If $n=0.1 \mu \mathrm{~mol}, \Delta H_{m}=\Delta H / n=-2.4 \times 10^{-3} \mathrm{cal} /\left(0.1 \times 10^{-6} \mathrm{~mol}\right)=-24 \mathrm{kcal} / \mathrm{mol}$
- Answer: impossible to tell b/c the extent of reaction is not known
- However, we know that the reaction is exothermic
- And that $\Delta H_{m} \leq-8 \mathrm{kcal} / \mathrm{mol}$

Enthalpy of drug binding - II

- Problem: 0.3 mL of 1 mM solution of a drug is added to a tube with a protein solution, and the drug reacts entirely with the protein to form a 1:1 protein-drug complex (no unbound drug is left). The reaction produces heat of -2.4×10^{-3} cal. Estimate molar enthalpy of binding.
A. $-8 \mathrm{kcal} / \mathrm{mol}$
B. $-12 \mathrm{kcal} / \mathrm{mol}$
C. $12 \mathrm{kcal} / \mathrm{mol}$
D. $3.6 \times 10^{-3} \mathrm{cal} / \mathrm{mol}$
E. impossible to tell because the extent of reaction is not known
- Solution:
* The total molar amount of drug is $0.3 \mu \mathrm{~mol}$
* All of it reacted, so $0.3 \mu \mathrm{~mol}$ of complex was formed ($n=0.3 \mu \mathrm{~mol}$)
* $\Delta H_{m}=\Delta H / n=-2.4 \times 10^{-3} \mathrm{cal} /\left(0.3 \times 10^{-6} \mathrm{~mol}\right)=-8 \mathrm{kcal} / \mathrm{mol}$
- Answer: - $8 \mathrm{kcal} / \mathrm{mol}$
- Note: It is important that all $0.3 \mu \mathrm{~mol}$ of drug was bound

Dissolution heat vs T changes

- Problem: After dissolving some amount of Lidocaine HCl in 1 ml pure water at room temperature, the ampule cooled down by 1.04 K . How much drug was dissolved? Molar enthalpy of Lidocaine HCl dissolution is $43.5 \mathrm{~kJ} / \mathrm{mol}$. Consider the density and the heat capacity of the solution approximately equal to those of pure water.
A. 1 mol
B. 100 mmol
C. 10 mmol
D. 1 mmol
E. $\quad 100 \mu \mathrm{~mol}$
- Solution: Two processes:
- (1) endothermic dissolution of Lidocaine (absorbs heat)
- (2) where is that heat subtracted from? This is why the ampule cools down!
- Specific heat capacity of water is $4.184 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$
- To decrease temperature of 1 ml of water by 1.04 K :
- heat of $4.184 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K}) \times 1.04 \mathrm{~K} \times 1 \mathrm{~g} \approx 4.35 \mathrm{~J}$ must be absorbed
- Equal to dissolution of $4.35 \mathrm{~J} \div 43.5 \mathrm{~kJ} / \mathrm{mol} \approx 0.1 \mathrm{mmol}$ of the drug
- Answer: 100μ moles

Thermodynamic cycle \& Hess law

- The enthalpy change for a reaction carried out in a series of steps is equal to the sum of the enthalpy changes for the individual steps.
- In a reaction:

Reactants (R) \Rightarrow Products (P)

- Enthalpy change for the reaction can be found from enthalpies of formation of R and P :

$$
\Delta H_{f}^{\circ}(R)+\Delta H_{r}=\Delta H_{f}^{\circ}(P)
$$

Deriving Dissolution Enthalpy from Enthalpies of Formation

- Problem: Standard enthalpy of formation of ammonia at $25^{\circ} \mathrm{C}$ is $-80.8 \mathrm{~kJ} / \mathrm{mol}$ for its aqueous form and $-45.9 \mathrm{~kJ} / \mathrm{mol}$ for its gaseous form. What is the enthalpy of dissolution of 2 moles of gaseous ammonia in water at $25^{\circ} \mathrm{C}$?
A. $\quad+34.9 \mathrm{~kJ}$
B. -34.9 kJ
C. +69.8 kJ
D. -69.8 kJ
E. +126.7 kJ
F. $\quad-126.7 \mathrm{~kJ}$
- Solution: Molar enthalpy of dissolution is the difference between standard enthalpies of formation:
- $-80.8-(-45.9)=-34.9 \mathrm{~kJ} / \mathrm{mol}$
- The enthalpy of dissolution of 2 moles is $2 \times-34.9=-69.8 \mathrm{~kJ}$
- Ammonium dissolution is exothermic!
- Answer: -69.8 kJ

Kirchhoff's Law : H(T)

- Relates enthalpies at different temperatures
- $H_{T 2}-H_{T 1}=C_{p} \times\left(T_{2}-T_{1}\right)$
- assuming that C_{p} is approx. constant within ΔT
- $H_{T 2}$ is $H_{T 1}$ plus energy needed to heat the sample
- Find enthalpy at a different temperatures:
- $H_{T 2}=H_{T 1}+C_{p}\left(T_{2}-T_{1}\right)$
- Find heat capacity within the given temp. range:
- $C_{p}=\left(H_{T 2}-H_{T 1}\right) /\left(T_{2}-T_{1}\right)=\Delta H / \Delta T$
- Find a new temperature given corresponding enthalpy:
- $T_{2}=T_{1}+\left(H_{T 2}-H_{T 1}\right) / C_{p}$

Kirchhoff's Law

- Problem: Molar enthalpies of formation of gaseous CO_{2} are -393 $\mathrm{kJ} / \mathrm{mol}$ at 293 K and $-391.89 \mathrm{~kJ} / \mathrm{mol}$ at 323 K . Approximately how much heat is needed to raise the temperature of a 3 mol sample of CO_{2} from $30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ at constant pressure?
- 1.11 kJ
- ~1 J
- 37 J
- -10 kJ
- 1179 kJ
- Solution 1: $\Delta_{\mathrm{f}} H_{\mathrm{T} 1}, \Delta_{\mathrm{f}} H_{\mathrm{T} 2}$, Kirchhoff's Law \Rightarrow molar hear capacity of CO_{2} at constant pressure and $20-50^{\circ} \mathrm{C}$:
- $C_{p, m}=(-391.89 \mathrm{~kJ} / \mathrm{mol}+393 \mathrm{~kJ} / \mathrm{mol}) / 30 \mathrm{~K} \sim 37 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$
- Heating a 3 mol sample by $10^{\circ} \mathrm{C}$ will require:

$$
\Delta T \times n \times C_{p, m}=10 \mathrm{~K} \times 3 \mathrm{~mol} \times 37 \mathrm{~J} /(\mathrm{mol} \mathrm{~K}) \sim 1.11 \mathrm{~kJ} \text { of heat }
$$

- Solution 2: Heating 3 moles by $10^{\circ} \mathrm{C}$ is \sim the same as heating 1 mole by 30°
- Simply take the difference $\Delta_{f} H_{T 2}-\Delta_{f} H_{T 1}=1.11 \mathrm{~kJ}$
- Answer: 1.11 kJ

