Week 2 problem solving

Heat Capacity (total, molar) Enthalpy of Drug Binding Enthalpy of Crystal Dissolution

Heat capacity, $C = q/\Delta T$

- How much *heat* is needed for a 1°K increase?
 - Substances with fewer atoms have low molar heat capacity
 - C is measured in J/K or cal/K, or derivative units (extensive)
- Where does the *heat* come from?
 - Internal (from a reaction in which Enthalpy changes)
 - External source
- Normalized Heat Capacity (per mole, mass, volume)
 - Introduce heat capacity per unit amount of sample
 - specific heat is per 1kg of mass $C[J/(kg\cdot K)]$, or $[J/(g \cdot K)]$
 - molar heat capacity is per mole C [J/(mol·K)]
- What is the heat capacity (specific heat) of water?
 - At STP, C_{H2O} = 1 cal/(g⋅K) = 4.1813 J/(g⋅K)

Heat content vs ΔT : q=C ΔT or C=q/ ΔT

- Problem: Specific heats of ethanol and water at STP are equal to 2.44 J/(g·K) and 4.18 J/(g·K), respectively. Their densities are 0.8 g/cm³ and 1 g/cm³, respectively. Compare temperature increases of 1 mL samples of ethanol and water after 1 cal = 4.18 J of heat is transferred to them.
 - A. $\Delta T(C_2H_5OH) = \Delta T(H_2O)$
 - B. $\Delta T(C_2H_5OH) = \Delta T(H_2O) \times 1.71$
 - C. $\Delta T(C_2H_5OH) = \Delta T(H_2O) \times 2.14$ Q3: $\Delta T = q/C$
- Solution:
 - 1 mL of water = 1 g \Rightarrow total C of 1 mL water is 4.18 J/K
 - 1 mL of ethanol = 0.8 g \Rightarrow C of 1 mL ethanol is 0.8 \times 2.44 = 1.95 J/K

Q1: weight of 1mL?

(c_n*mass)

Q2: C of 1m?

- ΔT for water = q/C_{water} = 4.18 J / 4.18 J/K = 1 K
- ΔT for ethanol =q/C_{ethanol =} 4.18 J / 1.95 J/K = 2.14 K

C_p and C_v heat capacities

At const. volume, C_v

- The system does not perform work
- All heat transferred to the system is added to its internal energy and translates into *T* increase

$$q = \Delta U = C_V \Delta T$$

Isobaric: at constant pressure: C_P

- The system may perform work
 E.g. if gas is produced in the reaction and allowed to expand
- Heat transferred to the system is spent in two ways :
 - ✤ partially on work
 - partially on T increase

$$\boldsymbol{q} = \Delta \boldsymbol{\mathsf{H}} = \Delta \boldsymbol{U} + \boldsymbol{P} \Delta \boldsymbol{V} = \boldsymbol{C}_{\boldsymbol{P}} \Delta \boldsymbol{T}$$

- T increase is lower than it would be w/o work
- $C_P > C_V$, by $P \Delta V / \Delta T$: • Liquids and solids: $P \Delta V \approx 0$

 $C_P \approx C_V$ \bigstar Ideal gas: work = $P \Delta V = nR \times \Delta T$ Per mole, $C_P \approx C_V + R$

Heat capacities of common substances

Substance	Phase	Isobaric specific heat capacity <i>C_P</i> J/(g⋅K)	Isobaric molar heat capacity C _{P,m} J/(mol·K)
Oxygen	gas	0.918	29.38
Carbon dioxide CO ₂	gas	0.839	36.94
Air (dry, 1 atm, 0°C)	gas	1.0035	29.07
Ethanol	liquid	2.44	112
Human tissue	mixed	3.5	
Water steam at 100°C	gas	2.08	37.47
Water at 25°C	liquid	4.18	75.33
Water ice at -10°C	solid	2.05	38.09

Reaction/transition thermochemistry

- Enthalpy change (ΔH) in a reaction or transition: Reactants (R) \Rightarrow Products (P)
- Heat of reaction is defined by enthalpy change
 - $\Delta H = H(\text{products}) H(\text{reactants})$
 - $\Delta H < 0$ means " \Rightarrow " is *exothermic* (produces heat)
 - $\Delta H > 0$ means " \Rightarrow " is *endothermic* (absorbs heat)
- Heat can be measured in a (micro)calorimeter, and used to:
 - Characterize the reaction (Endothermic/exothermic? Molar ΔH^0 ? Strength and number of bonds vs ΔH^0 sign)
 - Find the extent of reaction from ΔH and ΔH^0 (how much product is formed?)

Exothermic vs endothermic

 Problem: Calorimetric data on binding of several anti-HIV drugs to their common target, HIV protease, at T=300K is presented in the table. For how many drugs in the list, is the binding reaction endothermic?

A.	1

- B. 2
- C. 3
- D. 4
- E. 5
- F. 6
- Answer: 3 drugs. *Endothermic* means ΔH > 0, which is the case for Indinavir, Saquinavir, and Nelfinavir

Drug	∆H binding (kcal/mol)
Nelfinavir	3.1
Indinavir	1.8
Saquinavir	1.2
Tipranavir	-0.7
Lopinavir	-3.8
Atazanavir	-4.2
Ritonavir	-4.3
Amprenavir	-6.9
Darunavir	-12.7

(Quantitative) ΔH of reaction/transition

Reaction	Equation	∆H _m (react) = molar ∆H(react) = heat produced/absorbed when…
Dissolution	$D_{solid} + H_2O \leftrightarrow D_{aq}$	1 mole of drug/substance dissolves in infinite amount of water
Neutralization	$OH^- + H^+ \leftrightarrow H_2O$	1 mole of OH ⁻ interacts with 1 mole of H ⁺ to form 1 mole of H ₂ O
1:1 protein/ligand binding	$P + L \leftrightarrow PL$	1 mole of L binds to 1 mole of P to form 1 mole of PL complex

- $\Delta H(\text{react}) = \Delta H_m(\text{react}) \times n_{moles}$
- *n* is the extent of reaction:
 - Dissolution: n = amount of substance dissolved
 - Neutralization: n = amount of limiting reactant
 - Protein/ligand binding: n = amount of complex (not necessarily equal to limiting reactant!)
- $n = \Delta H / \Delta H_m$

Acid-base neutralization heat

Reaction: $HCl(aq) + NaOH(aq) -> NaCl(aq) + H_2O(l) + Energy$

- Problem: Molar enthalpy of neutralization reaction between HCl and NaOH at 25°C is -55.9 kJ/mol. When 25 mmol HCl was added to 10 ml of NaOH solution in a calorimeter, the evolved heat was measured to be 1 kJ. What was the concentration of NaOH in the solution?
 - A. 25 mM
 - B. 25 M
 - C. 0.55 M
 - D. 1.79 M
 - E. 17.9 mM
- Solution: If 25 mmol of HCl were completely neutralized by NaOH, ∆H would be equal to 0.025 mol × -55.9 kJ/mol ≈ -1.4 kJ. However, we only observed heat of 1 kJ.
 - NaOH was a limiting reactant
 - Only 1/55.9 = 0.0179 mol (17.9 mmol) of reaction products was formed
 - Therefore 17.9 mmol NaOH was present in the solution in the beginning
 - This corresponds to NaOH concentration of 1.79 M (17.9 mmol/10mL=1.79m/L).
- **Answer:** 1.79M
- Note: Acid/base neutralization involves formation of H₂O from OH- and H+; covalent bonds are formed, exothermic.

Protein-ligand binding equilibrium

Enthalpy of drug binding - I

- **Problem:** 0.3 mL of 1 mM solution of a drug is added to a tube with a protein solution. Some of the drug reacts with the protein to form 1:1 protein-drug complex. The reaction produces heat of -2.4×10^{-3} cal. Estimate molar enthalpy of binding ΔH_m .
 - A. –8 kcal/mol
 - B. -12 kcal/mol
 - C. 24 kcal/mol
 - D. 3.6×10^{-3} cal/mol
 - E. impossible to tell because the extent of reaction is not known
- Solution: The total molar amount of drug is 0.3 10⁻³L x 10 ⁻³mol/L = 0.3 μmol but how much of it is bound to the protein? And how much product (complex) was formed, in moles?
 - If $n = 0.3 \ \mu\text{mol}$, $\Delta H_m = \Delta H/n = -2.4 \ \text{x} \ 10^{-3} \ \text{cal} \ / \ (0.3 \times 10^{-6} \ \text{mol}) = -8 \ \text{kcal/mol}$
 - If $n = 0.2 \ \mu \text{mol}$, $\Delta H_m = \Delta H/n = -2.4 \ \text{x} \ 10^{-3} \ \text{cal} \ / \ (0.2 \times 10^{-6} \ \text{mol}) = -12 \ \text{kcal/mol}$
 - If $n = 0.1 \ \mu \text{mol}$, $\Delta H_m = \Delta H/n = -2.4 \ \text{x} \ 10^{-3} \ \text{cal} \ / \ (0.1 \times 10^{-6} \ \text{mol}) = -24 \ \text{kcal/mol}$
- **Answer:** impossible to tell b/c the extent of reaction is not known
 - However, we know that the reaction is exothermic
 - And that $\Delta H_m \leq -8$ kcal/mol

Enthalpy of drug binding - II

- Problem: 0.3 mL of 1mM solution of a drug is added to a tube with a protein solution, and the drug reacts entirely with the protein to form a 1:1 protein-drug complex (no unbound drug is left). The reaction produces heat of -2.4×10⁻³ cal. Estimate molar enthalpy of binding.
 - A. –8 kcal/mol
 - B. –12 kcal/mol
 - C. 12 kcal/mol
 - D. 3.6×10⁻³ cal/mol
 - E. impossible to tell because the extent of reaction is not known

• Solution:

- The total molar amount of drug is 0.3 μmol
- All of it reacted, so 0.3 μ mol of complex was formed (*n* = 0.3 μ mol)

- Answer: –8 kcal/mol
- Note: It is important that all 0.3 μmol of drug was bound

Dissolution heat vs T changes

- Problem: After dissolving some amount of Lidocaine HCl in 1 ml pure water at room temperature, the ampule cooled down by 1.04 K.
 How much drug was dissolved? Molar enthalpy of Lidocaine HCl dissolution is 43.5 kJ/mol. Consider the density and the heat capacity of the solution approximately equal to those of pure water.
 - A. 1 mol
 - B. 100 mmol
 - C. 10 mmol
 - D. 1 mmol
 - E. 100 μmol
- Solution: Two processes:
 - (1) endothermic dissolution of Lidocaine (absorbs heat)
 - (2) where is that heat subtracted from? This is why the ampule cools down!
 - Specific heat capacity of water is 4.184 J/(g·K)
 - To decrease temperature of 1 ml of water by 1.04K:
 - heat of 4.184 J/(g·K) \times 1.04K \times 1g \approx 4.35 J must be absorbed
 - Equal to dissolution of 4.35 J \div 43.5 kJ/mol \approx 0.1 mmol of the drug
- Answer: 100 μmoles

Thermodynamic cycle & Hess law

- The enthalpy change for a reaction carried out in a series of steps is equal to the sum of the enthalpy changes for the individual steps.
- In a reaction:

Reactants (R) \Rightarrow Products (P)

 Enthalpy change for the reaction can be found from enthalpies of formation of R and P:

 $\Delta H_{f}^{\circ}(R) + \Delta H_{r} = \Delta H_{f}^{\circ}(P)$

Deriving Dissolution Enthalpy from Enthalpies of Formation

- Problem: Standard enthalpy of formation of ammonia at 25°C is -80.8 kJ/mol for its aqueous form and -45.9 kJ/mol for its gaseous form. What is the enthalpy of dissolution of 2 moles of gaseous ammonia in water at 25°C?
 - A. +34.9 kJ
 - B. -34.9 kJ
 - C. +69.8 kJ
 - D. -69.8 kJ
 - E. +126.7 kJ
 - F. -126.7 kJ
- **Solution:** Molar enthalpy of dissolution is the difference between standard enthalpies of formation:
 - -80.8 (-45.9) = -34.9 kJ/mol
 - The enthalpy of dissolution of 2 moles is $2 \times -34.9 = -69.8$ kJ
 - Ammonium dissolution is exothermic!
- Answer: -69.8 kJ

Kirchhoff's Law : H(T)

- Relates enthalpies at different temperatures
- $H_{T2} H_{T1} = C_p \times (T_2 T_1)$
 - assuming that C_p is approx. constant within ΔT
- H_{T2} is H_{T1} plus energy needed to heat the sample
- Find enthalpy at a different temperatures:

•
$$H_{T2} = H_{T1} + C_p(T_2 - T_1)$$

- Find heat capacity within the given temp. range:
 - $C_p = (H_{T2} H_{T1}) / (T_2 T_1) = \Delta H / \Delta T$
- Find a new temperature given corresponding enthalpy:
 - $T_2 = T_1 + (H_{T2} H_{T1}) / C_p$

Kirchhoff's Law

- Problem: Molar enthalpies of formation of gaseous CO₂ are -393 kJ/mol at 293K and -391.89 kJ/mol at 323K. Approximately how much heat is needed to raise the temperature of a 3 mol sample of CO₂ from 30°C to 40°C at constant pressure?
 - 1.11 kJ
 - ~1J
 - 37 J
 - -10 kJ
 - 1179 kJ
- Solution 1: $\Delta_{f}H_{T1}$, $\Delta_{f}H_{T2}$, Kirchhoff's Law \Rightarrow molar hear capacity of CO₂ at constant pressure and 20-50°C:
 - $C_{p,m} = (-391.89 \text{ kJ/mol}+393 \text{ kJ/mol})/30\text{K} \sim 37 \text{ J/(mol K)}$
 - Heating a 3 mol sample by 10°C will require:

 $\Delta T \times n \times C_{p,m}$ = 10 K × 3 mol × 37 J/(mol K) ~ 1.11 kJ of heat

- Solution 2: Heating 3 moles by 10°C is ~ the same as heating 1 mole by 30°
 - Simply take the difference $\Delta_{f}H_{T2} \Delta_{f}H_{T1} = 1.11 \text{ kJ}$
- Answer: 1.11 kJ