Practice, Week 1

Therapeutic substance
Gases

Metric prefixes

Prefix	Symbol	Factor	Factor (sci. notation)
peta	\mathbf{P}	$1,000,000,000,000,000$	$\times 10^{15}$
tera	\mathbf{T}	$1,000,000,000,000$	$\times 10^{12}$
giga	\mathbf{G}	$1,000,000,000$	$\times 10^{9}$
mega	\mathbf{M}	$1,000,000$	$\times 10^{6}$
kilo	\mathbf{k}	1,000	$\times 10^{3}$
hecto	\mathbf{h}	100	$\times 10^{2}$
deca	$\mathbf{d a}$	10	$\times 10^{1}$
(none)	(none)	1	$\times 10^{0}$
deci	\mathbf{d}	0.1	$\times 10^{-1}$
centi	\mathbf{c}	0.01	$\times 10^{-2}$
milli	\mathbf{m}	0.001	$\times 10^{-3}$
micro	$\boldsymbol{\mu} \mathbf{(= u)}$	0.000001	$\times 10^{-6}$
nano	\mathbf{n}	0.000000001	$\times 10^{-9}$
pico	\mathbf{p}	0.000000000001	$\times 10^{-12}$
femto	\mathbf{f}	0.000000000000001	$\times 10^{-15}$

Pharm-related quantities and units

Quantity	SI unit	Pharmacology \& practice	Comment
Length	m	A $, \mathrm{nm}, \mu \mathrm{m}, \mathrm{cm}$	$1 \AA=0.1 \mathrm{~nm}$
Mass	kg	$\mathrm{g}, \mathrm{mg}, \mu \mathrm{g}$	
Time	S	S	
Temperature (absolute: K, relative: C,F)	K	K, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \Delta T\left[{ }^{\circ} \mathrm{C}\right]=\Delta T[\mathrm{~K}] \\ T\left[{ }^{\circ} \mathrm{C}\right]=T[\mathrm{~K}]-273.15 \end{gathered}$ Convert F to C
Amount of substance	mol	mol	6×10^{23} molecules
Area	m^{2}	m^{2}	
Volume	m^{3}	$1 \mathrm{~L}=1 \mathrm{dm}^{3}, 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	
Density	$\mathrm{kg} / \mathrm{m}^{3}$	$1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~g} / \mathrm{mL}$	Density of pure $\mathrm{H}_{2} \mathrm{O}$ is $1 \mathrm{~g} / \mathrm{mL}$
Concentration		$1 \mathrm{M}=1 \mathrm{~mol} / \mathrm{L} ; \mathrm{nM}, \mu \mathrm{M}, \ldots$	Avoid g/L
Unified atomic mass		1 Da corresponds to $1 \mathrm{~g} / \mathrm{mol}$	

Pharm-related quantities and units

Quantity	SI unit	Pharmacology \& practice	Comment
Speed	m / s		
Acceleration	$\mathrm{m} / \mathrm{s}^{2}$		
Force	$N=k g \times m / s^{2}$	Newton, pound, ..	Newton
Pressure	$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$	$\begin{gathered} 1 \mathrm{bar}=100,000 \mathrm{~Pa}=100 \mathrm{kPa} \\ 1 \mathrm{~atm}=101,325 \mathrm{~Pa} \approx 1 \mathrm{bar} \\ 1 \mathrm{mmHg}^{*}=1 \mathrm{~atm} / 760 \end{gathered}$	Pascal Hg is mercury
Energy	$\mathrm{J}=\mathrm{N} \times \mathrm{m}$	$1 \mathrm{cal} \approx 4.184 \mathrm{~J}$ [energy need to heat $1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ by $1^{\circ} \mathrm{C}$] $1 \mathrm{eV} \approx 1.6 \times 10^{-19} \mathrm{~J}$ [Δ energy when 1 electron moves through 1 \checkmark potential difference]	Food calorie: $1 \mathrm{CaI}=1 \mathrm{kcal}$ Avoid ambiguity, use kcal

*Blood pressure is a gauge pressure, not an absolute pressure

- $1 \mathrm{~atm}=760 \mathrm{mmHg}$
- Blood (gauge) pressure of $140 \mathrm{mmHg}=$ absolute P of $900 \mathrm{mmHg} \approx 1.184 \mathrm{~atm}$
- Blood (gauge) pressure of $80 \mathrm{mmHg}=$ absolute P of $840 \mathrm{mmHg} \approx 1.105 \mathrm{~atm}$

Constants

- STP = Standard Temperature and Pressure:
- $T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
- $\quad P=1 \mathrm{bar}=100 \mathrm{kPa}$
- $\mathbf{R T}=$ room Temperature $\approx 300 \mathrm{~K}$
- not to be confused with the other RT below
- Avogadro number $N_{A}=6.022 \times 10^{23}$
- Gas constant, R :

$$
\begin{array}{ll}
R \approx 8.314 & \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol}) \\
R \approx 5.189 \times 10^{19} & \mathrm{eV} /(\mathrm{K} \cdot \mathrm{~mol}) \\
R \approx 0.082 & \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol}) \\
R \approx 1.9872 \approx 2 & \mathrm{cal} /(\mathrm{K} \cdot \mathrm{~mol})
\end{array}
$$

- Boltzmann constant, $\boldsymbol{k}_{\mathrm{B}}=R / N_{A} \approx 1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- " $\boldsymbol{R T}$ " $=\boldsymbol{R} \times \boldsymbol{T}$ is the thermodynamic "currency"
- at room temp., $R T \approx 0.6 \mathrm{kcal} / \mathrm{mol} \approx 2.5 \mathrm{~kJ} / \mathrm{mol}$
- Air is $78 \% \mathrm{~N}_{2}, 21 \% \mathrm{O}_{2},<1 \% \mathrm{Ar}, 0.04 \% \mathrm{CO}_{2}$ (numbers rounded)
- Gravitational acceleration (g) near Earth's surface, $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

SI units

- Problem: The SI unit for density is
- $\mathrm{g} / \mathrm{m}^{3}$
- $0.1 \mathrm{Kg} / \mathrm{m}^{3}$
- $\mathrm{m} / \mathrm{Kg}^{3}$
- g / mL
- $\mathrm{Kg} / \mathrm{m}^{3}$
- Answer: $\mathrm{Kg} / \mathrm{m}^{3}$

Unit conversion

- Problem: The density of oxygen at room temperature is about $1.3 \mathrm{~kg} / \mathrm{m}^{3}$. Express its density in $\mathrm{g} / \mathrm{cm}^{3}$.
- 0.013
- 13
- 1300
- 130
- 0.0013
- Solution:
- $1 \mathrm{~kg}=10^{3} \mathrm{~g}$
- $1 \mathrm{~m}^{3}=100 \times 100 \times 100 \mathrm{~cm}^{3}=10^{6} \mathrm{~cm}^{3}$
- $1.3 \mathrm{~kg} / \mathrm{m}^{3}=1.3 \times 10^{3} / 10^{6}=0.0013 \mathrm{~g} / \mathrm{cm}^{3}$

Energy unit conversion

- Problem: 1 Joule is close to the following value:
- 4.2 kcal
- 2.092 cal
- 0.24 cal
- 8.314 cal
- 1.035 cal
- 4.184 cal
- Answer: 1 Joule = 0.24 cal; 1 cal = 4.184 Joule

Kelvin vs Celsius

- Problem: A patient's body temperature is determined to be 313 K . The patient is most likely
- healthy
- sick
- dead
- Answer:
- $313 \mathrm{~K} \approx 313-273=40^{\circ} \mathrm{C}$
- The patient has a fever therefore he/she is sick.

Gas constant : from T to Energy

- Problem: Calculate RT at $0^{\circ} \mathrm{C}$ in $\mathrm{kcal} / \mathrm{mol}$
- Solution: Of the many faces of the gas constant R...
* $R \approx 8.314 \quad J /(K \cdot m o l)$
* $R \approx 5.189 \times 10^{19} \quad \mathrm{eV} /(\mathrm{K} \cdot \mathrm{mol})$
* $R \approx 0.082 \quad L \cdot a t m /(K \cdot m o l)$
* $\mathrm{R} \approx 1.986 \quad \mathrm{cal} /(\mathrm{K} \cdot \mathrm{mol})$
- ... choose $\mathrm{R} \approx 1.986 \mathrm{cal} /(\mathrm{K} \cdot \mathrm{mol})$
- $T=0^{\circ} \mathrm{C} \approx 273 \mathrm{~K}$
- Therefore $R T=1.986 \times 273=542.178 \mathrm{cal} / \mathrm{mol} \sim 0.54 \mathrm{kcal} / \mathrm{mol}$
- Answer: $0.54 \mathrm{kcal} / \mathrm{mol}$
- At room temp, $R T \sim 0.6 \mathrm{kcal} / \mathrm{mol}$

Sizes of therapeutics (from atoms to proteins to cells)

- Problem: The distance between centers of two covalently bonded carbon atoms is close to:
- 1.5 nm
- $1.5 \mu \mathrm{~m}$
- $1.5 \AA$
- 0.015 nm
- 150 Å
- Answer: $1.5 \AA$ Å, same as 0.15 nm or 150 pm

Covalent bond length is shorter than

Non-covalent interaction distance

Biological size scale cntd.

- Problem: Cell membrane and the membranes surrounding inner cell organelles are phospholipid bilayers about \qquad thick
- 5 nm
- 100 pm
- 1 Å
- 5 Å
- 50 nm
- $5 \mu \mathrm{~m}$

- Answer: 5 nm
- Hint: membrane is a bilayers of phospholipids
- Each lipid has a head (~ 5 covalent bonds tall) and a hydrocarbon chain ($\sim 17-$ 20 covalent bonds long)
- $2 \times 25 \times 1.5 \mathrm{~A}$ (for the length of $\mathrm{C}-\mathrm{C}$ bond) $=75 \AA=7.5 \mathrm{~nm}$
- The actual answer is smaller, because bonds are connected at $\sim 120^{\circ}$ angles.

Comparative sizes of drugs and targets

Biological energy scale

- Problem: What is the best approximation for the energy of a covalent bond?
- $25 \mathrm{kcal} / \mathrm{mol}$ to $100 \mathrm{kcal} / \mathrm{mol}$
- exactly $10.45 \mathrm{kcal} / \mathrm{mol}$
- 1 to $2 \mathrm{kcal} / \mathrm{mol}$
- about $0.1 \mathrm{kcal} / \mathrm{mol}$
- 1 to $5 \mathrm{kcal} / \mathrm{mol}$
- Answer: $25 \mathrm{kcal} / \mathrm{mol}$ to $100 \mathrm{kcal} / \mathrm{mol}$
- Bonus problem: What about a hydrogen bond?
- Answer: In biological settings, a good estimate for a favorable hydrogen bond is $\sim 2.5 \mathrm{kcal} / \mathrm{mol}$

Concentrations, volumes, molar amounts...

- Concentration = molar amount $/$ volume
- measured in mol $/ \mathrm{L} \equiv \mathrm{M}$, also $\mathrm{mM}, \mu \mathrm{M}, \mathrm{nM}, \mathrm{pM}$ etc.
- molar amount = volume \times concentration
- volume = molar amount $/$ concentration
- MW = mass / molar amount
- measured in $\mathrm{g} / \mathrm{mol} \equiv \mathrm{Da}$
- Mass = MW x molar amount
- molar amount = mass $/ \mathrm{MW}$

Molar amount vs weight

- Problem: Fomepizole is used as an antidote in methanol and ethylene glycol poisoning. Estimate the weight of a 0.5 mmol sample of Fomepizole.
- 0.04 g
- 0.004 mg
- $0.5 \mu \mathrm{~g}$
- 82 g
- 4.05 g
- Solution:

Fomepizole is a competitive inhibitor of the enzyme alcohol dehydrogenase

- MW (Fomepizole) is $4 \times 12(\mathrm{C})+2 \times 14(\mathrm{~N})+6(\mathrm{H})=82$
- $0.5 \mathrm{mmol} \times 82 \mathrm{~g} / \mathrm{mol}=0.5 \times 10^{-3} \times 82 \mathrm{~g} / \mathrm{mol} \approx 0.04 \mathrm{~g}$
- Answer: 0.04 g

Molar amount vs weight (continued)

- Problem: Albumin is the most abundant serum protein and carrier for various drugs. Its concentration in plasma ranges from 30 to 50 g / L. Given that MW for albumin is 67 kDa , estimate its molarity.
- 440-740 nM
- 4-7 uM
- 440-740 uM
- $4-7 \mathrm{mM}$
- $44-74 \mathrm{mM}$

- Solution:
- $33.5 \mathrm{~g} / \mathrm{L} \div 67,000=5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}=0.5 \mathrm{mM}$ or 500 uM
- The correct range includes this number: 440-740 uM

Concentration vs amount

- Problem: What is the total molar amount of a compound in 0.3 mL of 1 mM solution of that compound?
- $0.3 \mu \mathrm{~mol}$
- impossible to tell because the MW of the compound is not given
- 3.33 mol
- 0.3 mg
- 0.3 mol
- Solution:
- Molar amount $=$ molar_concentration \times volume
- $=\left(1 \times 10^{-3}\right) \times\left(0.3 \times 10^{-3}\right)=0.3 \times 10^{-6}=0.3 \mu \mathrm{~mol}$

Avogadro number, $\mathrm{N}_{\mathrm{A}}=6 \times 10^{23}$

Remember: One mole is just an N_{A}-pack of molecules

- Problem: The approximate mass of one molecule of Penciclovir is $4.2 \times 10^{-22} \mathrm{~g}$. Calculate the molecular weight of the drug.
- $252 \mathrm{~g} / \mathrm{mol}$
- $172 \mathrm{~g} / \mathrm{mol}$
- $326 \mathrm{~g} / \mathrm{mol}$
- $472 \mathrm{~g} / \mathrm{mol}$
- $504 \mathrm{~g} / \mathrm{mol}$

- Solution:
- $\mathrm{MW}=4.2 \times 10^{-22} \times 6 \times 10^{23} \sim 252 \mathrm{~g} / \mathrm{mol}$

Week 1 equations

- Kinetic energy vs \boldsymbol{T}
- $1 / 2 M v^{2}=3 / 2 R T, \quad v=(3 R T / M)^{1 / 2}$
- Root mean square velocity:
- Here M is the molar mass of the chemical
- Equipartition principle: at thermal equilibrium, the energy is distributed equally between all available degrees of freedom
- Only translational degrees of freedom matter for T
- Graham's law: effusion rates vs molecular mass of the gas
- Rate1/Rate2 $=(\mathrm{m} 2 / \mathrm{m} 1)^{1 / 2}$
- Ideal gas law
- $P \times V=n \times R T$ ($n=\#$ of moles); $V=n \times R T / P$
- Barometric formula: atmospheric pressure at altitude h [m]
- $\mathrm{P}_{\mathrm{h}}=\mathrm{P}_{0} \exp (-\mathrm{Mgh} / \mathrm{RT})$
- Here M is molar mass [$\mathrm{kg} / \mathrm{mol}]$ if we divide by R
- Work $=$ Force \times Distance [J] (or Pressure $\times \Delta$ Volume)
- Pressure = Force / Area [Pa]

Kinetic energy vs temperature

- Problem: The Celsius temperature in a storage room was increased from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. How much did the average kinetic energy of molecules in the room change? Mark the closest answer.
- increased by $21 / 2$ times
- decreased
- increased by 8%
- increased by 2 times
- the increase cannot be calculated without knowing the molecular mass
- Solution:
- The kinetic energy is proportional to Kelvin temperature
- Kelvin T was: $273+25^{\circ} \mathrm{C}=298 \mathrm{~K}$
- Kelvin T now: $273+50^{\circ} \mathrm{C}=323 \mathrm{~K}$
- Ratio: $323 \mathrm{~K} / 298 \mathrm{~K} \sim 1.08$
- The temperature, as well as the average kinetic energy, increased by 8%.
- Note: Root mean square velocity will increase $=1.04$ times, i.e. only by ~ 4\%

Effusion rate (lecture 2)

- Problem: A mixture of oxygen ($\mathrm{MW}=16$) and helium ($\mathrm{MW}=4$) escapes through a porous membrane. Which of the gases escapes faster, and how much faster?
- oxygen, $4 x$
- oxygen, $2 x$
- same rate
- helium, $2 x$
- helium, $4 x$
- Solution:
- Use Graham's law: escape rate is inversely proportional to the square root of mass
- MW(He) is 4 times lighter, therefore it escapes 2 times faster

Volume of 1 mole of gas (lecture 2)

- Problem: Estimate the volume of 1 mole of nitrous oxide at $0^{\circ} \mathrm{C}$ and at $27^{\circ} \mathrm{C}$, assuming the atmospheric pressure.
- Solution: Ideal gas law, $P V=n R T$
- $V=R T$ / P (because $n=1$)
- Choose convenient units for $\mathrm{R}, \mathrm{R}=0.082 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})$
- Then can use $P=1 \mathrm{~atm}$, and $V=R T$
- At $273 \mathrm{~K}, \mathrm{RT} \approx 22.4 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} ; \mathbf{V} \approx 22.4 \mathrm{~L}$
- At $300 \mathrm{~K}, \mathrm{RT} \approx 24.6 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} ; \mathbf{V} \approx 24.6 \mathrm{~L}$
- Applies to any gas that can be approximated as ideal

Atmospheric pressure at elevation

- Problem: COPD patients experience worsening of symptoms (shortness of breath) when the atmospheric pressure drops by as little as $23 \mathrm{mmHg}(3 \%)$. This atmospheric pressure corresponds to what elevation above the sea level? Use 29 $\mathrm{g} / \mathrm{mol}$ for molar mass of air, assume $\mathrm{T}=300 \mathrm{~K}$ (26.85C)
- 11 km
- 3 km
- 1600 m (elevation of Denver - the "mile-high city")
- 900 m
- < 300 m

- Solution:

- $\mathrm{P}_{\mathrm{h}}=\mathrm{P}_{0} \exp (-\mathrm{Mgh} / \mathrm{RT})$
- Make sure to use SI metric units ($\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol})$)
- Exp(-Mgh/RT)=0.97; Mgh/RT=-Ln(0.97); h = -RT*Ln(0.97)/(0.029*9.8)
- $h \approx 268 \mathrm{~m}<300 \mathrm{~m}$

Degrees of freedom (DF) (**advanced, optional)

- DF are the elementary units of a molecular mixture ("variables") capable of storing kinetic or potential energy
- 1 DF stores energy $1 / 2 \boldsymbol{k T}$, 1 mole of DF stores energy $1 / 2 \boldsymbol{R T}$
- \# DF in a molecule depends on the \# atoms, physical state...
- \# of DF inside a molecule increases with T
- More variables get excited and capable of storing energy
- DF of a molecule in gas phase:
- \# DF trans $=3$
- \# DF ${ }_{\text {rot }}=0,2$, or 3
- \# DF vib $\leq 2 \times\left(3 \times N_{\text {at }}-3_{\text {trans }}-N_{\text {rot }}\right)$:
- In a fully excited state, a molecule with $N_{a t}$ is described by $3 \times N_{a t}$ independent variables $\Rightarrow \#$ of vibrational modes: $3 \times \mathrm{Nat}_{\mathrm{at}}-3_{\text {trans }}-\mathrm{N}_{\text {rot }}$
- Each vibrational mode contributes 2 DFs (can store potential and kinetic energy)
- Some (slow) vibrations ARE excited at 300 K
- E.g. collective motions involving rotatable $\mathrm{sp}_{3}-\mathrm{sp}_{3}$ torsional variables
- Other (fast) vibrations are NOT excited at 300 K
- Bond vibrations in most diatomic gases are not excited
- Bond vibrations in $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$ are partially or fully excited

Degrees of freedom in gas phase (**)

\(\left.$$
\begin{array}{|c|c|c|c|}\hline & \begin{array}{c}\text { Overall Movement } \\
\text { and Rotation }\end{array} & \begin{array}{c}\text { If ALL vibrations } \\
\text { are excited }\end{array} & \mathbf{T}=\mathbf{3 0 0 \mathrm { K }} \\
\hline \text { Translational only }\end{array}
$$ \quad \begin{array}{c}\mathbf{3}

No vibrations\end{array}\right]\)| $\mathbf{3}$ |
| :---: |

Degrees of freedom (**)

- Problem: Determine the number of degrees of freedom of adenosine triphosphate (ATP) in gas phase at T=300K.
- 1
- 2
- 3
- 4
- 5
- 6
- infinitely many

- Solution:
- $\# \mathrm{DF}_{\text {trans }}+\# \mathrm{DF}_{\text {rot }}=3+3=6 \ldots$
- At T=300K, collective motions involving the rotatable sp3-sp3 bonds are excited...
- Therefore, the total \#DF is finite but greater than 6.
- The correct answer is not given.

Experimentally measured $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ at 298 K

Gas		$\boldsymbol{C}_{\mathrm{V}, \mathrm{m}}, \mathbf{J} /(\mathrm{mol} \cdot \mathrm{K})$	$\boldsymbol{C}_{\mathrm{v}, \mathrm{m}} / \boldsymbol{R}$	\# DF
He	\bullet	12.5	1.5	3
Ne	\bullet	12.5	1.5	3
Ar	\bullet	12.5	1.5	3
Kr	\bullet	12.5	1.5	3
Xe	\bullet	12.5	1.5	3
H_{2}	$\bullet-\bullet$	20.18	2.43	5
CO	$\bullet-\bullet$	20.2	2.43	5
$\mathrm{~N}_{2}$	$\bullet-\bullet$	20.8	2.50	5
O_{2}	$\bullet-\bullet$	21.03	2.53	5
Cl_{2}	$\bullet-\bullet$	24.1	3.06	~ 6
$\mathrm{Br}_{2}(\mathrm{v})$	$\bullet-\bullet$	28.2	3.39	~ 7
$\mathrm{H}_{2} \mathrm{O}(\mathrm{v})^{*}$	$\bullet \bullet$	28.49	3.43	~ 7
CO_{2}	$\bullet-\bullet \bullet$	28.5	3.43	~ 7
CH_{4}	$\bullet \bullet \bullet$	27.1	3.26	$\sim 6-7$

* Value for $\mathrm{H}_{2} \mathrm{O}$ at 373 K
- \# of DF determines heat capacity of a substance:
* Each rotational/translational DF contributes $\mathrm{R} / 2$ to $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$
* Each (excited) vibrational mode contributes up to R to $C_{v, m}$
- Monoatomic gases have 3 DF:
$C_{v, m}=3 / 2 R$
- Diatomic gases have 5 DF below $\mathrm{T}_{\text {vib }}$
* for $\mathrm{H}_{2}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{~T}_{\text {vib }} \gg 298 \mathrm{~K}$
- When $T \geq T_{\text {vib }}$, vibrational DF's appear
* for $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{~T}_{\text {vib }} \leq 298 \mathrm{~K}$

