Practice, Week 1

Therapeutic substance Gases

Metric prefixes

Prefix	Symbol	Factor	Factor (sci. notation)
peta	Ρ	1,000,000,000,000,000	\times 10 ¹⁵
tera	т	1,000,000,000,000	$\times 10^{12}$
giga	G	1,000,000,000	\times 10 ⁹
mega	Μ	1,000,000	\times 10 ⁶
kilo	k	1,000	\times 10 ³
hecto	h	100	\times 10 ²
deca	da	10	\times 10 ¹
(none)	(none)	1	imes 10 ⁰
deci	d	0.1	$\times 10^{-1}$
centi	С	0.01	$\times 10^{-2}$
milli	m	0.001	$\times 10^{-3}$
micro	μ (=u)	0.000 001	$\times 10^{-6}$
nano	n	0.000 000 001	imes 10 ⁻⁹
pico	р	0.000 000 000 001	\times 10 ⁻¹²
femto	f	0.000 000 000 000 001	\times 10 ⁻¹⁵

Pharm-related quantities and units

Quantity	SI unit	Pharmacology & practice	Comment
Length	m	Å, nm, μm, cm	1 Å = 0.1 nm
Mass	kg	g, mg, µg	
Time	S	S	
Temperature (absolute: K, relative: C,F)	К	К, °С	$\Delta T [^{\circ}C] = \Delta T [K]$ $T [^{\circ}C] = T [K] - 273.15$ Convert F to C
Amount of substance	mol	mol	6×10 ²³ molecules
Area	m ²	m ²	
Volume	m ³	$1 L = 1 dm^3$, $1 mL = 1 cm^3$	
Density	kg/m ³	1 g/cm ³ = 1 g/mL	Density of pure H ₂ O is 1 g/mL
Concentration		1 M = 1 mol/L; nM, μ M,	Avoid g/L
Unified atomic mass		1 Da corresponds to 1 g/mol	

Pharm-related quantities and units

Quantity	SI unit	Pharmacology & practice	Comment
Speed	m/s		
Acceleration	m/s ²		
Force	$N = kg \times m/s^2$	Newton, pound,	Newton
Pressure	$Pa = N / m^2$	1 bar = 100,000 Pa = 100 kPa 1 atm = 101,325 Pa ≈ 1 bar 1 mmHg [*] = 1 atm / 760	Pascal Hg is mercury
Energy	J = N×m	$\label{eq:constraint} \begin{array}{l} 1 \ cal \approx 4.184 \ J \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Food calorie: 1 Cal = 1 kcal Avoid ambiguity, use kcal

*Blood pressure is a *gauge pressure*, not an *absolute pressure*

- 1 atm = 760 mmHg
- Blood (gauge) pressure of 140 mmHg = absolute P of 900 mmHg \approx 1.184 atm
- Blood (gauge) pressure of 80 mmHg = absolute P of 840 mmHg \approx 1.105 atm

Constants

- **STP** = Standard Temperature and Pressure:
 - T = 0 °C = 273.15 K
 - P = 1 bar = 100 kPa
- **RT** = room Temperature \approx 300 K
 - not to be confused with the other RT below
- Avogadro number $N_A = 6.022 \times 10^{23}$
- Gas constant, R:

$R \approx 8.314$	J / (K∙mol)
$R\approx 5.189{\times}10^{19}$	eV / (K∙mol)
$R \approx 0.082$	L·atm / (K·mol)
$R \approx 1.9872 \approx 2$	cal / (K∙mol)

- Boltzmann constant, $k_B = R / N_A \approx 1.38 \times 10^{-23} \text{ J/K}$
- "*RT*" = *R*×*T* is the thermodynamic "currency"
 - − at room temp., $RT \approx 0.6$ kcal/mol ≈ 2.5 kJ/mol
- Air is 78% N₂, 21% O₂, <1% Ar, 0.04% CO₂ (numbers rounded)
- Gravitational acceleration (g) near Earth's surface, g = 9.8 m/s²

SI units

- **Problem:** The SI unit for density is
 - g/m³
 - 0.1Kg/m³
 - m/Kg³
 - g/mL
 - Kg/m³
- Answer: Kg/m³

Unit conversion

- **Problem:** The density of oxygen at room temperature is about 1.3 kg/m³. Express its density in g/cm³.
 - 0.013
 - **1**3
 - **1**300
 - **1**30
 - 0.0013
- Solution:
 - 1 kg = 10³ g
 - $1 \text{ m}^3 = 100 \times 100 \times 100 \text{ cm}^3 = 10^6 \text{ cm}^3$
 - $1.3 \text{ kg/m}^3 = 1.3 \times 10^3 / 10^6 = 0.0013 \text{ g/cm}^3$

Energy unit conversion

- **Problem:** 1 Joule is close to the following value:
 - 4.2 kcal
 - 2.092 cal
 - 0.24 cal
 - 8.314 cal
 - 1.035 cal
 - 4.184 cal
- Answer: 1 Joule = 0.24 cal; 1 cal = 4.184 Joule

Kelvin vs Celsius

- **Problem:** A patient's body temperature is determined to be 313 K. The patient is most likely
 - healthy
 - sick
 - dead
- Answer:
 - 313 K ≈ 313-273 = 40°C
 - The patient has a fever therefore he/she is sick.

Gas constant : from T to Energy

- **Problem:** Calculate RT at 0°C in kcal/mol
- **Solution:** Of the many faces of the gas constant R...
 - $\clubsuit R \approx 8.314 \qquad J / (K \cdot mol)$
 - ♦ $R \approx 5.189 \times 10^{19}$ eV / (K · mol)
 - $\clubsuit R \approx 0.082 \qquad \text{L·atm / (K · mol)}$
 - $\clubsuit R \approx 1.986 \qquad cal / (K \cdot mol)$
 - ... choose $R \approx 1.986$ cal / (K · mol)
 - $T = 0^{\circ} C \approx 273 \text{ K}$
 - Therefore RT = 1.986 × 273 = 542.178 cal/mol ~ 0.54 kcal/mol
- Answer: 0.54 kcal/mol
 - At room temp, *RT ~ 0.6 kcal/mol*

Sizes of therapeutics (from atoms to proteins to cells)

- **Problem:** The distance between centers of two covalently bonded carbon atoms is close to:
 - 1.5 nm
 - 1.5 μm
 - 1.5 Å
 - 0.015 nm
 - 150 Å
- Answer: 1.5 Å, same as 0.15 nm or 150 pm

Covalent bond length is shorter than

Non-covalent interaction distance

Biological size scale cntd.

 Problem: Cell membrane and the membranes surrounding inner cell organelles are phospholipid bilayers about _____ thick

- 100 pm
- 1Å
- 5 Å
- 50 nm
- 5 μm

- **Answer:** 5 nm
- *Hint:* membrane is a bilayers of phospholipids
 - Each lipid has a head (~ 5 covalent bonds tall) and a hydrocarbon chain (~ 17-20 covalent bonds long)
 - 2 × 25 × 1.5 A (for the length of C-C bond) = 75 Å = 7.5 nm
 - The actual answer is smaller, because bonds are connected at ~120° angles.

Comparative sizes of drugs and targets

Biological energy scale

- Problem: What is the best approximation for the energy of a covalent bond?
 - 25 kcal/mol to 100 kcal/mol
 - exactly 10.45 kcal/mol
 - 1 to 2 kcal/mol
 - about 0.1 kcal/mol
 - 1 to 5 kcal/mol
- Answer: 25 kcal/mol to 100 kcal/mol
- Bonus problem: What about a hydrogen bond?
- Answer: In biological settings, a good estimate for a favorable hydrogen bond is ~2.5 kcal/mol

Concentrations, volumes, **molar** amounts...

- Concentration = molar amount / volume
 - measured in mol/L \equiv M, also mM, μ M, nM, pM etc.
 - molar amount = volume × concentration
 - volume = molar amount / concentration
- MW = mass / molar amount
 - measured in g/mol = Da
 - Mass = MW x molar amount
 - molar amount = mass / MW

Molar amount vs weight

- **Problem:** Fomepizole is used as an antidote in methanol and ethylene glycol poisoning. Estimate the weight of a 0.5 mmol sample of Fomepizole.
 - 0.04 g
 - 0.004 mg
 - 0.5 μg
 - 82 g
 - 4.05 g

Fomepizole is a competitive inhibitor of the enzyme alcohol dehydrogenase

- Solution:
 - MW(Fomepizole) is 4×12(C) + 2×14(N) + 6(H) = 82
 - 0.5 mmol × 82 g/mol = $0.5 \times 10^{-3} \times 82$ g/mol ≈ 0.04 g
- Answer: 0.04 g

Molar amount vs weight (continued)

- Problem: Albumin is the most abundant serum protein and carrier for various drugs. Its concentration in plasma ranges from 30 to 50 g/L. Given that MW for albumin is 67 kDa, estimate its molarity.
 - 440-740 nM
 - 4-7 uM
 - 440-740 uM
 - 4-7 mM
 - 44-74 mM

• Solution:

- 33.5 g/L ÷ 67,000 = 5×10⁻⁴ mol/L = 0.5 mM or 500 uM
- The correct range includes this number: 440-740 uM

Concentration vs amount

- Problem: What is the total molar amount of a compound in 0.3 mL of 1 mM solution of that compound?
 - 0.3 µmol
 - impossible to tell because the MW of the compound is not given
 - 3.33 mol
 - 0.3 mg
 - 0.3 mol
- Solution:
 - Molar amount = molar_concentration × volume
 - = $(1 \times 10^{-3}) \times (0.3 \times 10^{-3}) = 0.3 \times 10^{-6} = 0.3 \mu mol$

Avogadro number, $N_A = 6 \times 10^{23}$

Remember: One mole is just an N_A –pack of molecules

- Problem: The approximate mass of one molecule of Penciclovir is 4.2 x 10⁻²² g. Calculate the molecular weight of the drug.
 - 252 g/mol
 - 172 g/mol
 - 326 g/mol
 - 472 g/mol
 - 504 g/mol
- Solution:
 - MW = 4.2 × 10⁻²² × 6 × 10²³ ~ 252 g/mol

Week 1 equations

- Kinetic energy vs T
 - $1/2 Mv^2 = 3/2 RT$, $v = (3RT/M)^{1/2}$
 - Root mean square velocity:
 - Here *M* is the molar mass of the chemical
 - Equipartition principle: at thermal equilibrium, the energy is distributed equally between all available degrees of freedom
 - Only translational degrees of freedom matter for T
- Graham's law: effusion rates vs molecular mass of the gas
 - Rate1/Rate2 = (m2/m1)^{1/2}
- Ideal gas law
 - $P \times V = n \times RT$ (n = # of moles); $V = n \times RT / P$
- Barometric formula: atmospheric pressure at altitude h [m]
 - $P_h = P_0 \exp(-Mgh/RT)$
 - Here *M* is molar mass [kg/mol] if we divide by R
- Work = Force \times Distance [J] (or Pressure $\times \Delta$ Volume)
- **Pressure** = Force / Area [Pa]

Kinetic energy vs temperature

- **Problem:** The Celsius temperature in a storage room was increased from 25°C to 50 °C. How much did the average kinetic energy of molecules in the room change? Mark the closest answer.
 - increased by 2½ times
 - decreased
 - Increased by 8 %
 - increased by 2 times
 - the increase cannot be calculated without knowing the molecular mass
- Solution:
 - The kinetic energy is proportional to **Kelvin** temperature
 - Kelvin T was: 273 + 25°C = 298 K
 - Kelvin T now: 273 + 50°C = 323 K
 - Ratio: 323 K /298 K ~ 1.08
 - The temperature, as well as the average kinetic energy, increased by 8%.
- Note: Root mean square velocity will increase = 1.04 times, i.e. only by ~ 4%

Effusion rate (lecture 2)

- Problem: A mixture of oxygen (MW = 16) and helium (MW = 4) escapes through a porous membrane. Which of the gases escapes faster, and how much faster?
 - oxygen, 4x
 - oxygen, 2x
 - same rate
 - helium, 2x
 - helium, 4x
- Solution:
 - Use Graham's law: escape rate is inversely proportional to the square root of mass
 - MW(He) is 4 times lighter, therefore it escapes 2 times faster

Volume of 1 mole of gas (lecture 2)

- Problem: Estimate the volume of 1 mole of nitrous oxide at 0°C and at 27°C, assuming the atmospheric pressure.
- **Solution:** Ideal gas law, PV = nRT
 - V = RT / P (because n = 1)
 - Choose convenient units for R, R = 0.082 L·atm / (K·mol)
 - Then can use P = 1 atm, and V = RT
 - At 273 K, RT ≈ 22.4 L·atm / mol; V ≈ 22.4 L
 - At 300 K, RT ≈ 24.6 L·atm / mol; V ≈ 24.6 L
 - Applies to any gas that can be approximated as ideal

Atmospheric pressure at elevation

- Problem: COPD patients experience worsening of symptoms (shortness of breath) when the atmospheric pressure drops by as little as 23 mmHg (3%). This atmospheric pressure corresponds to what elevation above the sea level? Use 29 g/mol for molar mass of air, assume T=300K (26.85C)
 - 11 km
 - 3 km
 - 1600 m (elevation of Denver the "mile-high city")
 - 900 m
 - < 300 m</pre>

• Solution:

- $P_h = P_0 \exp(-Mgh/RT)$
- Make sure to use SI metric units (R = 8.314 J / (K·mol))
- Exp(-Mgh/RT)=0.97; Mgh/RT=-Ln(0.97); h = -RT*Ln(0.97)/(0.029*9.8)
- *h* ≈ 268 m < 300 m</p>

Degrees of freedom (DF) (**advanced, optional)

- DF are the elementary units of a molecular mixture ("variables") capable of storing kinetic or potential energy
 1 DF stores energy ½ kT, 1 mole of DF stores energy ½ RT
- # DF in a molecule depends on the # atoms, physical state...
 - # of DF inside a molecule increases with T
 - More variables get excited and capable of storing energy
- DF of a molecule in gas phase:
 - # DF_{trans} = 3
 - $\# DF_{rot} = 0, 2, or 3$
 - $\text{ # DF}_{vib} ≤ 2 × (3 × N_{at} 3_{trans} N_{rot}):$
 - In a fully excited state, a molecule with N_{at} is described by 3×N_{at} independent variables ⇒ # of vibrational modes: 3×N_{at}-3_{trans}-N_{rot}
 - Each vibrational mode contributes 2 DFs (can store potential and kinetic energy)
 - Some (slow) vibrations ARE excited at 300 K
 - E.g. collective motions involving rotatable sp₃-sp₃ torsional variables
 - Other (fast) vibrations are NOT excited at 300 K
 - Bond vibrations in most diatomic gases are not excited
 - Bond vibrations in Cl_2 , Br_2 , l_2 are partially or fully excited

Degrees of freedom in gas phase (**)

	-			
	Overall Movement and Rotation	If ALL vibrations are excited	T = 300K	
	3	3	3	
	Translational only	No vibrations		
	5	(3×2–5)×2+5= 7	5	
	# DF _{trans} =3 # DF _{rot} =2	# DF _{vib} =2	for most X_2 gases 6-7 for Cl_2 , Br_2 , l_2 (based on $C_{v,m}$)	
	6	(3×3–6)×2 + 6 = 12	~7	
	# DF _{trans} =3 # DF _{rot} =3	# DF _{vib} =6	(based on C _{v,m}) only 1 of 6 DF _{vib} is excited	
. ?	6	(3×N _{at} –6)×2+6	>> 6	
A she	# DF _{trans} =3 # DF _{rot} =3	Many vibrations!	sp₃-sp₃ torsion vibrations are excited	

Degrees of freedom (**)

- Problem: Determine the number of degrees of freedom of adenosine triphosphate (ATP) in gas phase at T=300K.
 - **1**
 - **2**
 - 3
 - **4**
 - **5**
 - 6
 - infinitely many
 - the correct answer not given
- Solution:
 - #DF_{trans} + #DF_{rot} = 3+3 = 6...
 - At T=300K, collective motions involving the rotatable sp3-sp3 bonds are excited...
 - Therefore, the total #DF is finite but greater than 6.
 - The correct answer is not given.

** (preview) DF and heat capacity, C_{v,m}

Gas		C _{v,m} , J/(mol⋅K)	C _{v,m} /R	# DF
He	•	12.5	1.5	3
Ne	•	12.5	1.5	3
Ar	•	12.5	1.5	3
Kr	•	12.5	1.5	3
Xe	•	12.5	1.5	3
H ₂	●_●	20.18	2.43	5
CO	●_●	20.2	2.43	5
N ₂	●_●	20.8	2.50	5
O ₂	●_●	21.03	2.53	5
Cl ₂	●_●	24.1	3.06	~ 6
Br ₂ (v)	●-●	28.2	3.39	~ 7
H ₂ O (v)*	•••	28.49	3.43	~ 7
CO ₂	•-•-•	28.5	3.43	~ 7
CH ₄	•••	27.1	3.26	~ 6-7

Experimentally measured $C_{v,m}$ at 298K

- # of DF determines heat
 capacity of a substance:
 - Each rotational/translational DF contributes R/2 to C_{v,m}
 - Each (excited) vibrational mode contributes up to R to C_{v,m}
- Monoatomic gases have 3 DF: C_{v,m} = 3/2R
- Diatomic gases have 5 DF below T_{vib}

✤ for H₂, CO, N₂, T_{vib} >> 298K

• When $T \ge T_{vib}$, vibrational DF's appear

♣ for Cl_2 , Br_2 , l_2 , $T_{vib} \le 298K$

* Value for H₂O at 373K