Review

Drug quantity: Molecular weight, moles, Avogadro, pills, Reactions/Transitions, Energies

- From molecular mass in Da to the mass of 1 mole, e.g. how many moles in a 100 mg tablet? What is a mole and the Avogadro number
- Molecules move at temperature T : mean velocity $\mathrm{V}=\sqrt{3 R T / \text { MolMass }}$

Do not forget that T is Kelvin temperature and ${ }^{\circ} \mathrm{K}=273.15+{ }^{\circ} \mathrm{C}$

- Gas constant R in different units convenient for the calculation
- Understanding reaction (or transition) Equilibrium and how to calculate an equilibrium constant K for any transition or reaction. Example: drug-target dissociation $K_{d}:[P L]->[P]+[L], K_{d}=[P][L] /[P L], K_{d}$ has units of concentration
- Reaction or transition energy changes: $\Delta \mathbf{G}=\Delta \mathbf{H}-\mathbf{T} \Delta \mathbf{S}$, meaning
- ΔH is responsible for the heat: negative - exo, positive - endo
- Molar amounts $\Delta \mathrm{H}_{0}$, or given the concentration or amount how much heat is produced

Review

- LogP definition: $\log _{10}\left(\frac{C_{o c t}}{C_{w a t}}\right)$
- How to convert this ratio to the water to octanol transition energy. Hint: $\mathrm{K}=\left(\frac{C_{\text {oct }}}{C_{\text {wat }}}\right) ; \Delta \mathrm{G}=-\mathrm{RT} \operatorname{lnK}$
- Radioactive decay, gamma rays, their energy, wavelength, speed-of-light, Planck constant h, frequency
- Boiling and propellants. Propellant-based inhalers

Review

- Free Energy ΔG
- chemical potential μ of a component in a mixture:

$$
\mu_{i}=\mu_{i}^{c_{0}}+R T \ln \frac{c_{i}}{c}
$$

- Gas
- Liquid mixture
- $\Delta \mathrm{G}$ and entropy of mixing.
- The chemical equilibrium
- K via concentrations and reaction stoichiometry
- From K, to $\Delta \mathrm{G}^{\circ}$
- From K at T_{1} and T_{2}, to ΔH°, Van't Hoff

$$
K=\prod_{i=1}^{n} a_{i}^{v_{i}}, \quad \text { e.g. } K=\frac{[A \bullet B]}{[A][B]}
$$

$$
\ln K=\frac{-\Delta_{r} G^{o}}{R T}
$$

$$
\ln K=-\frac{\Delta_{r} H^{o}}{R T}+\frac{\Delta_{r} S^{o}}{R} \quad \ln \left(\frac{K_{1}}{K_{2}}\right)=-\frac{\Delta H^{o}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

Binding Reaction: Protein + Ligand

K_{a}, subscript 'a' means association/binding

- $P L \leftrightarrow P+L ; K_{\text {dissociation }}=[P][L] /[P L] ; K_{a}=1 / K_{d}$
- $x=[P L] ;\left(P_{0}-x\right)\left(L_{0}-x\right)=x \bullet K_{d}$
- $x=1 / 2 \bullet\left(P_{0}+L_{0}+K_{0}-\left(\left(P_{0}+L_{0}+K_{0}\right)^{2}-4 P_{0} L_{0}\right)^{1 / 2}\right)$
- $P_{0} \ll K_{d}:[P L] /[P] \approx L_{0} / K_{d}\left(50 \%\right.$ inh. @ $\left.L_{0}=K_{d}\right)$

Target Fraction: $[\mathrm{PL}] /\left[\mathrm{P}_{0}\right]=\mathrm{L}_{0} /\left(\mathrm{K}_{\mathrm{d}}+\mathrm{L}_{0}\right)$

- $[P L] \ll P_{0}$ (protein in excess) : [PL]/[L] $\approx P_{0} / K_{d}$, fraction_drug_bound $\approx P_{0} /\left(P_{0}+K_{d}\right)$

LogD depends on LogP of the neutral form and $\mathrm{pH}-\mathrm{p} \mathrm{K}_{a}$

$$
\begin{aligned}
& \text { pKa }=4.2 ; \operatorname{LogD}(\mathrm{pH}=7.2) \approx 1.87-3=-1.13 \\
& \begin{aligned}
\log D & =\log P-\log \left(1+10^{\mathrm{pH}-\mathrm{pKa})} \quad\right. \text { for acids } \\
& \approx \log \mathrm{P}-(\mathrm{pH}-\mathrm{pKa}) \quad \text { (for } \mathrm{pH}>\mathrm{pKa}+1, \text { charged form dominates) }
\end{aligned} \\
& {[A H]_{\text {wat }}}
\end{aligned}
$$

$$
\log D=\log P-\log \left(1+10^{-(\mathrm{pH}-\mathrm{p} K \mathrm{a})}\right) \text { for bases }
$$

$$
\approx \log \mathrm{P}+(\mathrm{pH}-\mathrm{pKa}) \quad(\text { for } \mathrm{pH}<\mathrm{pKa}-1, \text { charged form dominates })
$$

Review. Mixtures, Osmosis

- Chemical potential of the same molecule in different phases or compartments (osmosis) must be equal
- Chemical potential of water is lower (better) in solution If $\mathrm{x}_{\text {solutes }}$ is small:
- Osmotic pressure: $\mathrm{P}_{\text {sm }}=\mathrm{MRT}$, where M is molarity corrected by dissociation, $i, M=i M_{0}$
- Osmosis: semi permeable membranes.
- Osmolarity and Tonicity: counting solutes that can not cross the membrane and taking dissociation into account (i, van't Hoff's factor).
- Boiling point elevation
- Freezing point depression (K_{f} does not depend on solutes!). $\mathrm{K}_{\mathrm{f}}=1.858 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$
- Water pressure reduction: Raoult's law
- Gas dissolution in water: Henry's law
- The effects are entropic and to the first approximation do not depend on the nature

$$
\begin{aligned}
& P_{o s m}=\frac{\Delta n_{\text {sol }}}{V} R T=i \Delta M R T \\
& \Delta T_{\text {boiling }}=K_{b} x_{\text {solutes }} \\
& \Delta T_{\text {freezing }}=K_{f} x_{\text {solutes }} \\
& P_{w_{-} \text {vap_solution }}=P_{w-v a p_{-} p u r e} x_{\text {water }} \\
& P_{\text {solute_in_gas }}=K_{\text {Henry }}^{\text {solute }} x_{\text {solute_in_water }}
\end{aligned}
$$ of solutes (colligative properties)

Review of Energy Contributions to the non-covalent Binding Energy

- q-q: Coulomb: (+) or (-) , strong in non-polar medium and weak in water. Long range $\left(r^{l}\right) . C=332$ (kcal/mol)Å(eu) ${ }^{-2}$
- q-water: Ion and dipole Solvation. Large (-):.
- D-H..A: Hbonds. Medium, short range.
- A-A: Van der Waals interaction Weak (-0.2 km), but many. Short range (r^{-6}).
- Apolar-Apolar Hydrophobic energy, water entropy contribution

$$
\begin{aligned}
& E_{e l}=C \frac{q_{1} q_{2}}{\varepsilon r} \\
& E_{w-m}^{s o l v}=\frac{C q^{2}}{2 r_{q}}\left(\frac{1}{\varepsilon_{w}}-\frac{1}{\varepsilon_{m}}\right) \\
& E_{h b}=f\left(r_{H A}, \alpha_{A_{L P} H D}\right) \\
& E_{v w}=\frac{A}{r^{12}}-\frac{B}{r^{6}} \\
& E_{h p}=\sigma \cdot \text { Area }
\end{aligned}
$$

H.H.: a quantitative picture

- Most drugs are weak acids or weak bases
- It is not all or nothing, there are always several species at different concentrations

$$
\begin{aligned}
& \log \left(\frac{\left[A^{-}\right]}{[H A]}\right)=p H-p K a \\
& \log \left(\frac{[B]}{[B H+]}\right)=p H-p K a
\end{aligned}
$$

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\text {Base }]}{[\mathrm{Acid}]} \\
& p K a=-\log \left(K_{a}\right) \\
& p H=-\log \left(\left[H^{+}\right]\right)
\end{aligned}
$$

Drug Solutions (acidic and basic)

$$
\begin{aligned}
& p H=\frac{1}{2} p K_{a}-\frac{1}{2} \log c \\
& p H=7+\frac{1}{2} p K_{a}+\frac{1}{2} \log c
\end{aligned}
$$

Kinetics and Diffusion

$k=A e^{-\frac{G_{\text {activation }}}{R T}}$
$J=-D \frac{d C}{d x} \approx \Delta C$

- $[$ Drug] $=$ Flux $(\mathrm{J}) \cdot$ Area (A) \cdot Time

$$
K_{e q}=\frac{[B]}{[A]}=\frac{k_{f}}{k_{r}}
$$

$$
\begin{aligned}
& K_{\text {bind }}=\frac{[P L]}{[P][L]}=\frac{k_{o n}}{k_{o f f}} \\
& K_{d}=\frac{[P][L]}{[P L]}=\frac{k_{\text {off }}}{k_{o n}}
\end{aligned}
$$

Methods

- Braggs Law of Diffraction
- The diffraction condition for a crystal $2 \mathrm{~d} \cdot \sin \theta=n \lambda$
$-\lambda$ is the wavelength of gamma-rays ($\sim 1.5 \mathrm{~A}$)
- d is the distance between planes,
- θ is the angle of diffraction
- and n is an integer known as the order of the diffracted beam

$$
\begin{array}{ll}
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) & \text { Lorenz force }
\end{array} \frac{m \mathbf{v}^{2}}{R}=q \mathbf{v} B .
$$

The Finals

- 20 problems, 2hours, do the easy ones first
- Start submitting no later than 11:45 to avoid missing the submission deadline
- If your laptop fails or you do not have one, use your friend's device, or my laptop to enter the answers
- The worst-case scenario: you will have a chance to retake

