Drug Kinetics. Rate Laws

Real kinetics, Zero and First Order, Examples

The time course of drug plasma concentrations over 96 hours following oral administrations every 24 hours

Integrated Rate Laws

Integrated Rate Laws give the concentrations of reactants and products as function of time

Zero-order reactions do NOT depend on the concentration and are limited by an external (constant) concentration of factor.

$$
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t}=-k_{0}, \quad k_{0}=\left[\mathrm{mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\right]
$$

Zero-order Integrated Rate Law

$$
[\mathrm{A}]=[\mathrm{A}]_{o}-k t
$$

Half-life of the Zero-Order Reaction

- $t_{1 / 2}=A_{0} / 2 k_{0}$
- Examples:
- Degradation of suspensions or solid state
- Dissolution of drug crystals (assuming infinite dilution)
- Pseudo-zero-order: an elimination bottleneck
[A] vs time for a 0 order reaction

First Order reaction

- The rate is proportional to the concentration.
- Example, radioactive decay: $\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d} t}=-k[\mathrm{~A}], \quad k=\left[\mathrm{s}^{-1}\right]$
- k is rate constant
- $1^{\text {st }}$ order Integrated Rate Law:

$$
[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-k t}
$$

[A] vs time for a 1st order reaction

- Half-life does not depend on C_{0}

$$
\frac{1}{2}[\mathrm{~A}]_{0}=[\mathrm{A}]_{0} \mathrm{e}^{-k_{1 / 2}} \Rightarrow \frac{1}{2}=\mathrm{e}^{-k k_{/ 2}} \Rightarrow \frac{1}{2}=\mathrm{e}^{-k k_{1 / 2}} \Rightarrow k t_{1 / 2}=\ln 2
$$

$$
t_{1 / 2}=\ln 2 / k=0.693 / k
$$

Uni-molecular Reactions

First order (e.g. $\mathrm{A} \leftrightarrow \mathrm{B}$) reaction. Initially: Rate $=\boldsymbol{k}[A]$

Cyclopropane

Citalopram R

Propene

Citalopram S

Racemic and Enantiopure drugs

Racemic mixture	Single-enantiomer (entantiopure)
Amlodipine (Norvasc)	Levamlodipine (EsCordi Cor)
Amphetamine (Benzedrine)	Dextroamphetamine (Dexedrine)
Bupivacaine (Marcain)	Levobupivacaine (Chirocaine)
Cetirizine (Zyrtec / Reactine)	Levocetirizine (Xyzal)
Chlorphenamine (INN)	Dexchlorpheniramine (Polaramine)
Citalopram (Celexa / Cipramil)	Escitalopram (Lexapro / Cipralex)
Fenfluramine (Pondimin)	Dexfenfluramine (Redux)
Formoterol (Foradil)	Arformoterol (Brovana)
Ibuprofen (Advil / Motrin)	Dexibuprofen (Seractil)
Ketamine (Ketalar)	Esketamine (Ketanest S)
Ketoprofen (Actron)	Dexketoprofen (Keral)
Methylphenidate (Ritalin)	Dexmethylphenidate (Focalin)
Milnacipran (Ixel / Savella)	Levomilnacipran (Fetzima)
Modafinil (Provigil)	Armodafinil (Nuvigil)
Ofloxacin (Floxin)	Levofloxacin (Levaquin)
Omeprazole (Prilosec)	Esomeprazole (Nexium)
Salbutamol (Ventolin)	Levalbuterol (Xopenex)
Zopiclone (Imovane / Zimovane)	Eszopiclone (Lunesta)

Prefixes: (S): Leva, Levo, Es, Sinistra, (left)
(R): Dextro, Dex, Ar, (right)

Example:

Esketamine (ok)
Arketamine ($:=$)

The Timing of Dangerous

 transitionsThalidomide: One enantiomer is effective against morning sickness, whereas the other is teratogenic. However, the enantiomers are converted into each other in vivo. Dosing with a single-enantiomer form of the drug will still lead to both the D and L isomers
 eventually being present in the patient's serum and thus would not prevent side effects (though it might reduce them if the rate of in vivo conversion can be slowed).
Ethambutol: Whereas one enantiomer (S, S) is used to treat tuberculosis, the other (R, R) causes blindness. Naproxen: (S)-(+)-naproxen is used to treat arthritis pain, but (R)-(-)-naproxen causes liver poisoning with no analgesic effect.

The Chemical Decomposition: Hydrolysis

- If half life is independent on the initial concentration, i.e. hydrolysis, it is the first order reaction
- Pseudo-first order kinetics: one of the reactants is in large excess
- Liquid dosage form + drug decomposition in vivo

Hydrolysis: Ester

- $\mathrm{r}-\mathrm{C}(=\mathrm{O}) \mathrm{O}-\mathrm{R}^{\prime}$
- Methyldopate, tetracaine, procaine, etc.
- Faster at acidic pH

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{C}-\mathrm{OCH}_{3} \\
\downarrow \mathrm{H}_{2} \mathrm{O} \\
\mathrm{CH}_{3}-\mathrm{COH}+\mathrm{CH}_{3} \mathrm{OH}
\end{gathered}
$$

Physostigmine (cholinesterase inhibitor) is used to treat glaucoma and delayed gastric emptying

Procaine

Timing of Ester Hydrolysis of Aspirin in solution

- Invented by Felix Hoffman, patented by Bayer in 1899
- Cleavage of the Aspirin ester is a part of its COX-1/2 inactivation mechanism
- 1% a day hydrolysis of suspension of aspirin

Aspirin Acetylates Serine 530 in Cox2

Hydrolysis: Lactones, Amide

β-propiolactone γ-butyrolactone (GBL) glucono delta-lactone (GDL) Caprolactone

- A cyclic ester
- Lactones are hydrolyzed
- Amide: R-C(=O) $\mathbf{N H}_{2}$
- The reaction is catalyzed by either acid or base

$+\quad \mathrm{H}_{2} \mathrm{~N}^{-\mathrm{R}^{2}}$

Hydrolysis: Lactam

- A cyclic amide.
- Beta-lactam antibiotics

Penicillin-core

Hydrolysis: Imide

- $\mathrm{R}-\mathrm{C}(=\mathbf{O}) \mathrm{NH} \mathrm{C}(=\mathbf{O})-\mathrm{R}^{\prime}$
- Some imide-containing drugs

Generic_Name Methohexital

Generic_Name Ethosuximide

Generic_Name Phenacemide

Generic_Name Troglitazone

$1^{\text {st }}$ Order: LogC vs \mathbf{t} plot: $\mathbf{t}_{1 / 2}$ and

For exponential decay $C=C_{0} e^{-k t}, \ln \left(C / C_{0}\right)=-k t$

- Plot $\log _{10}($ Amount) vs time
- If it is a straight line, the reaction follows the $1^{\text {st }}$ order kinetics
- Calculate the slope
- $\mathrm{k}_{1}=$ Slope/In10 = Slope/2.3
- $t_{1 / 2}=0.69 / k_{1}$

Example problem: $1^{\text {st }}$ order reaction

- Q: Thalidomide undergoes spontaneous conversion from (+) form to (-) form and vice-versa, with the rate of conversion depending on the composition of the solution. For example, the half-life of (+)Thalidomide in human plasma is 11.5 minutes. Estimate the rate constant for the reaction of conversion of (+)Thalidomide into (-)Thalidomide in human plasma.
- Hints:
- Enantiomer conversion is $1^{\text {st }}$ order; hence constant $\mathrm{t}_{1 / 2}$
- Asks for rate constant (k), not rate ($d[A] / d t=-k[A]$)
- S: use $k t_{1 / 2}=\ln 2 . \mathrm{t}_{1 / 2}=11.5 \mathrm{~min}=690 \mathrm{~s}$. The rate constant is $\mathrm{k}=\ln 2 / \mathrm{t}_{1 / 2}=\ln 2 / 690 \sim 0.001 \mathrm{~s}^{-1}$
- A: $0.001 \mathrm{~s}^{-1}$

Second Order reactions

- Rate is determined by the concentrations of two reacting species

High concentration $=$ More collisions

$$
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t}=-k_{2}[\mathrm{~A}][\mathrm{B}], \quad k=\left[\mathrm{M}^{-1} \mathrm{~s}^{-1}\right]
$$

- If both initial
concentrations are the same, or both components are the same reactant

$$
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}[\mathrm{~A}]^{2}, \quad \mathrm{k}=\left[\mathrm{M}^{-1} \mathrm{~s}^{-1}\right]
$$

Second order

- $\mathrm{A}+\mathrm{B}$ to products
- 2A to products
- E.g. [P]+[L] \leftrightarrow [PL] (in 1:1 stoichiometry)
- Integrate Rate Law:

$$
\frac{1}{[A]}-\frac{1}{[A]_{0}}=k_{2} t
$$

- Half life (changing):
[A] vs time for a 2nd order reaction

$$
t_{1 / 2}=\frac{1}{k_{2}[A]_{0}}
$$

Example problem: $2^{\text {nd }}$ order reaction

- Q: The 1:1 binding reaction between a drug and its protein target is first order with respect to each of the reactants. In the solution of 1 nM protein and 100 nM drug, the initial rate of complex formation was found to be $12 \mathrm{pM} / \mathrm{s}$. What will be the initial rate of complex formation in the solution of $1 \mu \mathrm{M}$ protein and $1 \mu \mathrm{M}$ drug?
- Hints:
- First order in each of the reactants means that $\mathrm{d}[\mathrm{PD}] / \mathrm{dt}=\mathrm{k}[\mathrm{P}][\mathrm{D}]$. The reaction is $2^{\text {nd }}$ order altogether.
- Asks for rate (d[PD]/dt)
- S: When [P] is increased from 1 nM to $1 \mu \mathrm{M}$ (1000-fold increase), and [D] is increased from 100 nM to $1 \mu \mathrm{M}$ (10-fold increase), the rate must increase 10000-fold. The new rate will then be $12 \mathrm{pM} / \mathrm{s}$ $x 10^{4}=120 \mathrm{nM} / \mathrm{s}$.
- A: $120 \mathrm{nM} / \mathrm{s}$

Arrhenius equation

- The rate constant of chemical reaction, \boldsymbol{k}
$k=(P f) e^{-\frac{G_{a c t i v a t i o n}}{R T}}$

$P f$ is the pre-exponential su factor (pre-factor)

Svante Arrhenius, Swedish physical chemist. In 1903 he became the first Swede to be awarded the Nobel Prize in chemistry.

Thermodynamics equilibrium

$$
K=e^{-\frac{G_{A B}}{R T}}
$$

