Kinetics, Diffusion, Drug Stability, Pharmacokinetics

- Rates of drug dissolution, permeation, diffusion, metabolism, binding are controlled by the laws of chemical kinetics
- Liquid (and even solid) dosage drug form is susceptible to timedependent:
 - Hydrolysis
 - Oxidation
 - Isomerization
 - Photochemical decomposition
 - Polymerization
 - Precipitation

- ...

Kinetics vs Thermodynamics

- Rate = Change per unit time, e.g. moles/s
- Rate of reaction = the rate at which the reactants are transformed into the products. Kinetics laws: time-dependence of concentrations.
- Thermodynamics establishes concentration at an equilibrium.
- Thermodynamics laws define the ratios of equilibrium concentrations

Real **Pharmacokinetics** depends on many concurrent processes (ADME)

Our goal is characterizing and classifying individual transitions involved in Administration, Distribution, Metabolism and Elimination, their types and contributing factors

> Example: the same amount of drug administered in three different ways

Drug Elimination Kinetics: 0 vs 1

- First order: Metabolism Rate is proportional to drug concentration
- A fixed *fraction* is metabolized per time unit.
- Half life is does not depend on the dose
- Zero order: Metabolism Rate is constant
- The rate does not depend on the drug concentration
- Half life depends on the drug concentration

Diffusion: net flow

Diffusion is a random process, and the laws describe the net flow

Diffusion vs concentration gradient

- Diffusion is the net action of matter, heat, light, ... whose end is to minimize a concentration gradient in space
- Flux, J, is the amount of substance flowing through unit area per second
- **J** [mol m⁻² s⁻¹]
- Question: How does J depend on the concentration difference (or gradient)?

Concentration Gradient

$$\Delta C = C_{\beta} - C_{\alpha}$$

Fick's Laws of Diffusion

 E_a

RT

- Relates the flux and the concentration (C) gradient (difference per unit length)
- 1st Law: Steady State

Free energy, G

- 2nd Law: time dependence
- **D** depends on the diffusion activation energy (barrier). Simple diffusion without transporter

∆G[‡] simple

diffusion

Diffusion

∆G[∓]transport

with transporter

 $J = -P \Delta C$

Adolf Eugen Fick, 1829-1901, a German physiologist, invented contact lenses

Total amount diffused

- E.g. from the intestines to the bloodstream through intestinal walls
- The **total** *amount* of drug absorbed is

Flux(J) • Area(A) • Time

- *J* [mol m⁻² s⁻¹]; *J*×*A* [mol s⁻¹]; *J*×*A*×*t* [mol]
- Flux is $J = -P(C^{\alpha} C^{\beta}) = -P\Delta C$

- where **P** is permeability (related to diffusion coefficient)

Rates of Chemical Reactions

Rate Laws and Rate Constants

P 🚯

- Integrated Rate Laws
 - Zero-order Reactions
 - First-order Reactions
 - Second-order Reactions
- Temperature dependence of the

Reaction Rates (Arrhenius)

Reaction Rates

- Molecules or atoms of reactants must collide with each other in chemical reactions (concentrations).
- The molecules must have sufficient energy (discussed in terms of activation energy) to initiate the reaction. That leads to k(T)
- In some cases, the orientation of the molecules during the collision must also be considered.

Rates of a Chemical Reaction

Example: $A + 2B \rightarrow 3C + D$ $-\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = +\frac{1}{3}\frac{d[C]}{dt} = +\frac{d[D]}{dt}$ Rate of Consumption $-\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt}$

Rate of Formation

$$\frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$

Reversible reactions: connection between kinetic and thermodynamic constants **Examples:** - Epimerization of tetracyclines At equilibrium Chiral transition of thalidomide d[A] $= -k_f[A] + k_r[B] = 0$ d*t* K eq

Rates and Equilibrium Constant

- A ⇔ B
- Forward rate: $k_f[A]$
- Reverse rate: k_r [B]
- Equilibrium:

 $k_f[A] = k_r[B]$

$$K_{eq} = \frac{[B]}{[A]} = \frac{k_f}{k_r}$$

• P + L ⇔ PL

- Forward rate: k_{on}[P][L]
- Reverse rate: k_{off} [PL]
- Equilibrium (stationary):
 k_{on}[P][L] = k_{off}[PL]

$$K_{bind} = \frac{[PL]}{[P][L]} = \frac{k_{on}}{k_{off}}$$
$$K_d = \frac{[P][L]}{[PL]} = \frac{k_{off}}{k_{on}}$$

The Unique Rate of a Chemical Reaction

The unique Rate of Reaction is defined as:

$$rate = \frac{1}{v_j} \frac{d[c_j]}{dt}$$

where C_j is a generic participant to the reaction and v_j its stoichiometric number.

Reaction Rates are reported in [mol L⁻¹ s⁻¹]

Rate Laws

The Rate Law is an experimentally determined equation that expresses the rate of reaction, *r*, as a function of concentrations:

$$\mathbf{r} = k \cdot f([A], [B], etc.)$$

The coefficient k is called rate constant.

It is *often* possible to write the function as a product of concentrations with constant exponents:

$$\mathbf{r} = k[A]^{x}[B]^{y}[C]^{z}$$

Reaction Order

$$v = k[A]^{x}[B]^{y}[C]^{z}$$

The reaction is said to be of order x with respect to [A], etc. The overall order of the reaction is

x + y + z

The orders are generally unrelated to the stoichiometric coefficients in the reaction equation. E.g.,

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g), v = k[N_2O_5]$

Arrhenius

• The **rate constant** of chemical reaction, *k*

$$k = (Pf)e^{-\frac{G_{activation}}{RT}}$$

- *Pf* is the pre-exponential factor (pre-factor),
- *R* is the gas constant

The equilibrium constant of a reaction, ${\it K}$

 G_{AB} RT K = e

Svante Arrhenius, Swedish physical chemist. In 1903 he became the first Swede to be awarded the Nobel Prize in chemistry.

Jacobus van't Hoff