Kinetics, Diffusion, Drug Stability,
Pharmacokinetics

Diffusion

* Rates of drug dissolution,
permeation, diffusion,
metabolism, binding are
controlled by the laws of
chemical kinetics

* Liquid (and even solid) dosage drug
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Kinetics vs Thermodynamics

Rate = Change per unit
time, e.g. moles/s

Rate of reaction = the
rate at which the
reactants are
transformed into the
products. Kinetics laws:
time-dependence of
concentrations.

Thermodynamics
establishes
concentration at an
equilibrium.
Thermodynamics laws
define the ratios of
equilibrium
concentrations
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Real Pharmacokinetics depends on
many concurrent processes (ADME)

Our goal is
characterizing and
classifying individual
transitions involved in
Administration,
Distribution,
Metabolism and
Elimination, their types
and contributing factors

Example: the same
amount of drug
administered in three
different ways

ug/ml
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Drug Elimination Kinetics: Ovs 1

First order: Metabolism Rate is
proportional to drug concentration

A fixed fraction is metabolized per
time unit.

Half life is does not depend on the
dose

/ero order: Metabolism Rate is
constant

The rate does not depend on the
drug concentration

Half life depends on the drug
concentration
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Drug Diffusion

Absorption

Facilitated
Diffusion ctive Transport Endocytosis

Receptor-mediated
Extracellular fluid endocytosis




Diffusion: net flow

e Diffusion is a random © Cow &
process, and the laws cv o
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Diffusion vs
concentration
gradient

Diffusion is the net action of matter, heat, light, ..
whose end is to minimize a concentration

gradient in space

Flux, J, is the amount of substance flowing
through unit area per second

J [ mol m2s1]

Question: How does J depend on the
concentration difference (or gradient)?
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Concentration Gradient

Membrane

Concentration

AC =Cy-C,



Fick’s Laws of Diffusion

Relates the flux and the
concentration (C) gradient J=-PAC 1829 1903, o German
(difference per unit length) -

contact lenses

15t Law: Steady State dC
29 Law: time dependence =—D—
D depends on the diffusion dx

actlvat|on energy (barrier).
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Total amount diffused

E.g. from the intestines to the bloodstream through
intestinal walls

The total amount of drug absorbed is
Flux(J)eArea(A)eTime

J [ mol m2s1]; JxA [ mol s'1]; JxAxt [ mol ]

Flux is J = —P(C*— CP) = —PAC

— where P is permeability (related to diffusion coefficient)

R



Rates of Chemical Reactions

. Rate Laws and Rate Constants

. Integrated Rate Laws

. Zero-order Reactions
. First-order Reactions

. Second-order Reactions

. Temperature dependence of the

Reaction Rates (Arrhenius)

C ¢



Reaction Rates

e Molecules or atoms of reactants must collide
with each other in chemical reactions
(concentrations).

* The molecules must have sufficient energy
(discussed in terms of activation energy) to
initiate the reaction. That leads to k(T)

* |n some cases, the orientation of the
molecules during the collision must also be

considered.



Rates of a Chemical Reaction

Example:
A+2B—->3C+D

~dl4]  1d[B]  1d[c]  d|D]
i 2d 3ar

Rate of Consumption

dl4] 1d|B]
At 2 dt

Rate of Formation
1d|C]_d|D]

3 dt dt



Reversible reactions: connection
between kinetic and thermodynamic constants

e Examples: 1 B
— Epimerization of

tetracyclines

) .. At equilibrium
— Chiral transition of d

thalidomide d[A]

= —k,[A]l+k,[B]=0



Rates and Equilibrium Constant

A< B

Forward rate: k{A]
Reverse rate: k,[B]

Equilibrium:
kdA] = k,[B]
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The Unique Rate of a Chemical Reaction

The unigue Rate of Reaction is defined as:
1 d|c]
v, dt

where C, is a generic participant to the
reaction and V; its stoichiometric number.

rate =

Reaction Rates are reported in [mol L't s7]



Rate Laws

The Rate Law is an experimentally determined

equation that expresses the rate of reaction, F,
as a function of concentrations:

r=k- f([A],[B],etc )

The coefficient k& is called rate constant.

It is often possible to write the function as a

product of concentrations with constant
exponents:

r=kAl|BI[C]



Reaction Order

v=klA]'[B]'[C]
The reaction is said to be of order x with

respect to [A], etc. The overall order of the
reaction is

X+y+2z

The orders are generally unrelated to the
stoichiometric coefficients in the reaction
equation. E.g.,

2N,05(g) - 4NO,(g)+0,(g), v=Kk|N,O]



Arrhenius

 The rate constant of
chemical reaction, k

Gac tvation

k=(Pf)e "

* Pfisthe pre-exponential
factor (pre-factor),

Svante Arrhenius,
Swedish physical
chemist. In 1903 he
became the first Swede
to be awarded the Nobel
Prize in chemistry.

ee energy

 Ris the gas constant

The equilibrium constant of

a reaction, K K=e &

Jacobus van’t Hoff



