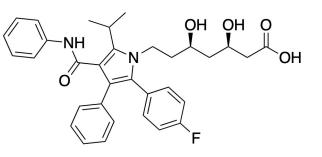
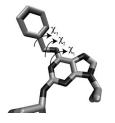
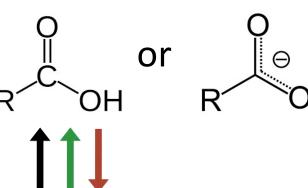
Drug Ionization, pKa vs pH Membrane Permeability

Henderson–Hasselbalch equation

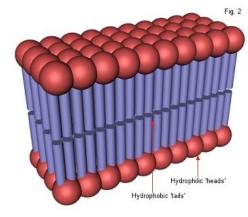

Drug Physico-Chemical Properties


- Ionization (pH, pKa)
- Lipophilicity (logP)
- Solubility in water (logS₀)
- Stability. Metabolic stability in human liver microsomes
- Size (MW, Da, number of atoms)
- Flexibility



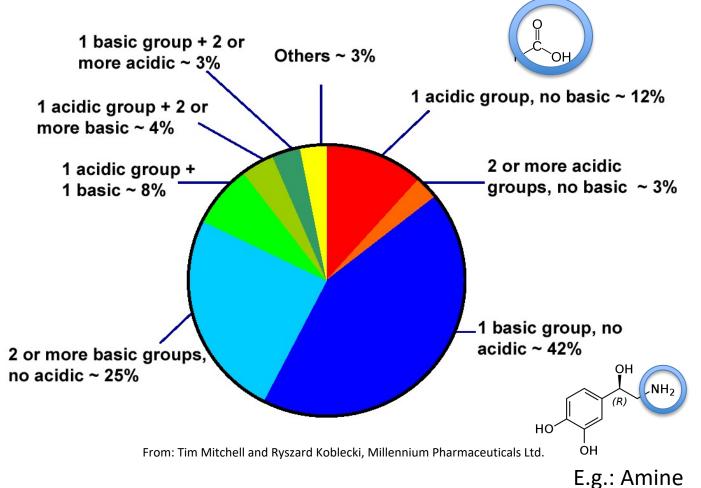
Which groups are charged at pH = 7.4? What is LogD?

Is it going to be water soluble? What about the GI environment?

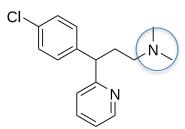


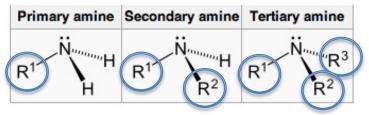
Opposite requirements: Drugs may need to be **neutral** to permeate and **charged** to act

- Solubility and absorption of a drug are highly variable and require opposite properties
- It depends on the chemical nature of the drug, pH, concentrations
- Dissolution, absorption and distribution depend on the charge of the drug
- In most cases the *neutral form* of a drug can *passively permeate* the membrane
- Every exposed charge matters (rather than the mean). Zwitterions do not help
- Active transport may change things : hijacking the bio-traffic



Most drugs have ionizable groups


Acid \Leftrightarrow H⁺ + Base

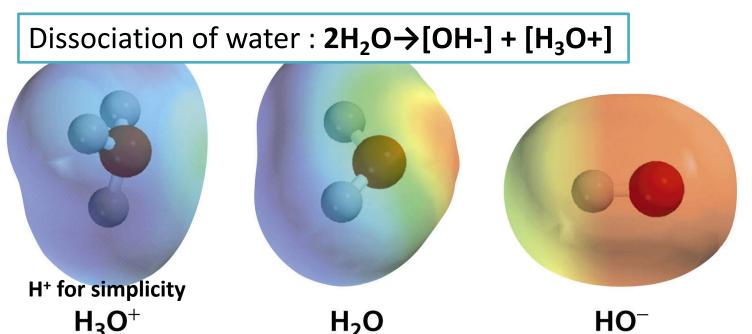

- From about 55K drugs in WDI, 63% (~32K) are ionizable.
- 2/3rds have one or more basic group.

E.g.: Carboxylic acid

Amines in Drugs: Examples

Lone pair or H+ depending on the pH

Amines become additionally protonated and positively charged at pH less than pK_a of that amine


pK_a is **pH** at which 50% are protonated and 50% deprotonated

- Chlorpheniramine : an antihistamine.
- Chlor*promazine* : a tranquillizer
- Ephedrine and phenylephrine :decongestants.
- Amphetamine, methamphetamine, and methcathinone : psycho-stimulant amines
- Amitriptyline, imipramine, lofepramine and clomipramine : tert. amines, tricyclic antidepressants (TCA) ad.
- Nortriptyline, desipramine, and amoxapine : secondary amines, tricyclic antidepressants

Most atoms stay covalently bonded, but hydrogen is an exception

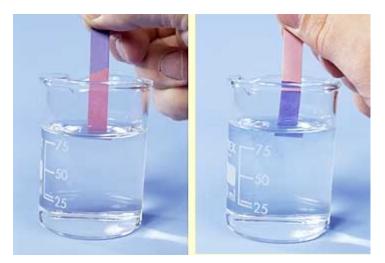
Hydrogen ions jump:

- Between water molecules
- Between drugs and water molecules
- Between both and acids/bases in solution

Log-measure is convenient for a large range of concentrations, pH and pK_a

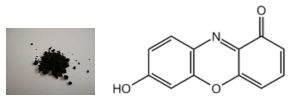
Hydroxonium molarities range from 1 to 10⁻¹⁴ M

Use the "p" (power) operator: $p \Rightarrow -log_{10}$


$$pH = -\log_{10}[H_3^+O]$$

рН

- **pH** (power of Hydrogen ion) is a measure of [H3O+] molarity.
- pH ≡ −log₁₀[a_{H+}],
- a_{H+} is activity of water ("effective concentration")
- $a_{H+} \approx [H+]$, i.e. molarity of hydroxonium ions, in M=mol/L
- Example: lemonade has [H+] ~ 0.005M, pH ≈ -log₁₀(0.005) ≈ 2.3

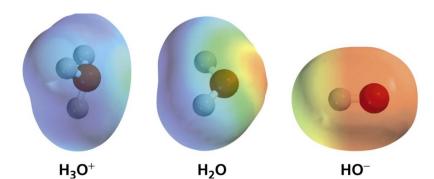

Acidity, Body and Drugs

- Litmus test (**pH** indicator)
- **pH** is a log-measure of proton (or H₃O⁺)
 concentration

below pH 4.5 above pH 8.3 4.5 \leftrightarrow 8.3

Litmus is a water-soluble mixture of different dyes extracted from lichens.

Chemical structure of 7-hydroxyphenoxazone, the chromophore of litmus components



Lichens: Fungus + Alga or cyanobacterium

Self-ionization of water

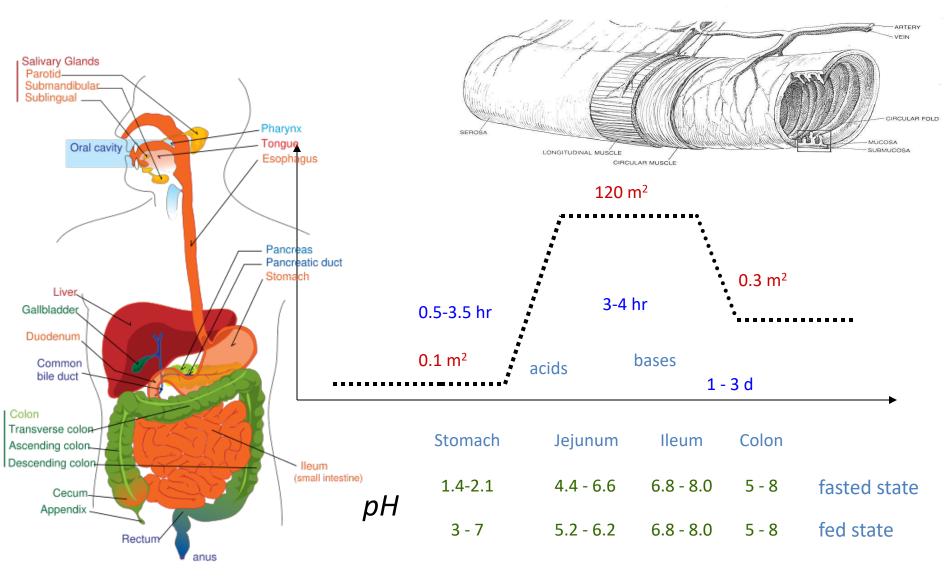
• $2H_2O \rightarrow [OH-] + [H_3O+]$

- K_w=[H₃0+][OH-], dissociation constant via molarities of two ions.
- Warning! K_w is NOT a standard equilibrium constant, since the [H2O]² is omitted.
- Water molarity will also be omitted in K_a later
- $K_w = 10^{-14} \text{ (mol/L)}^2$

$$[H_3O+]_{pure w} = 10^{-7} M pH=7$$

- Low pH : many free protons/H₃O⁺
- High pH : few free protons/H₃O⁺

Acid-Base Imbalances

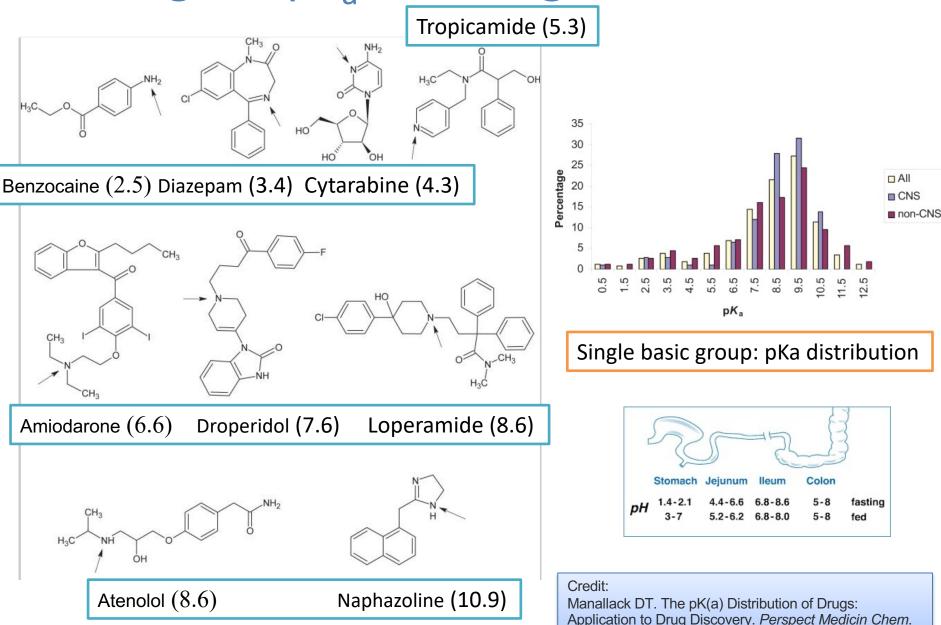

- Blood *plasma* is slightly alkaline or basic at pH=7.4
- Body compartments and cell compartments may have different pH values
- Plasma Acidosis
 - High blood [H⁺]
 - Low blood pH, <7.35
- Plasma Alkalosis
 - Low blood [H⁺]
 - High blood pH, >7.45

Site	Nominal pH
Aqueous humour	7.21
Blood, arterial	7.40
Blood, venous	7.39
Blood, maternal umbilical	7.25
Cerebrospinal fluid	7.35
Duodenum	5.5
Faeces ^b	7.15
lleum, distal	8.0
Intestine, microsurface	5.3
Lacrimal fluid (tears)	7.4
Milk, breast	7.0
Muscle, skeletal ^c	6.0
Nasal secretions	6.0
Prostatic fluid	6.45
Saliva	6.4
Semen	7.2
Stomach	1.5
Sweat	5.4
Urine, female	5.8
Urine, male	5.7
Vaginal secretions, premenopause	4.5
Vaginal secretions, postmenopause	7.0

^a Reproduced from D. W. Newton and R. B. Kluza, *Drug Intell. Clin. Pharm.*, 12, 547 (1978).

^b Value for normal soft, formed stools, hard stools tend to be more alkaline, whereas watery, unformed stools are acidic.

Absorption in GI tract, from pH of 1.4 to 8


Dressman, Amidon, Reppas, Shah, Pharm. Res. 1998, 15, 11.

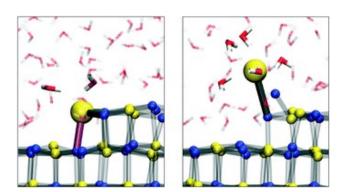
Acids and Bases, K_a and pK_a We'll consider only Bronsted equilibria. E.g., $HAc + H_2O \Leftrightarrow H_3O^+ + Ac^ NH_{4}^{+} + H_{2}O \Leftrightarrow H_{3}O^{+} + NH_{3}$ or, more generally, Acid + $H_2O \Leftrightarrow H_3O^+$ + Base which has the *acidity constant K_a* ([H₂O] is omitted, as in K_{w}) $K_{a} = \frac{a(H_{3}O^{+})a(Base)}{a(Acid)}$ $pK_{a} = -\log_{10}K_{a}$

pKa of some functional groups

phosphates (DNA) 1.5, 6.5 carboxylates (Asp, Glu, C-ter) 3.5-5 phenols (Tyr) 9.5-11 sulfhydryls (Cys) 8.4 (charged near metals) hydroxyls (Ser, Thr) 13.5 amines 2.5-11 imidazole (His) 6-7 amino (Lys, N-term) 10.5 guanidinium (Arg) 12.5

Range of pK_as for drugs with amines

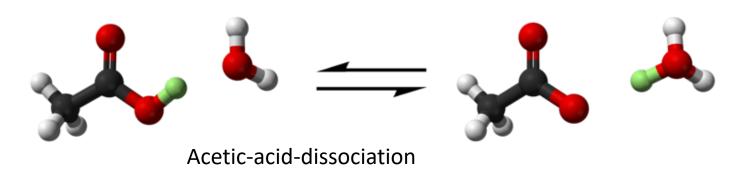
Groups are shown by arrows, pK₂ values in parentheses


Application to Drug Discovery. Perspect Medicin Chem. 2007;1:25-38. Published 2007 Sep 17.

Solubility

- S = [concentration of a saturated solution]
- Units: g/dL, g/L, mol/L
- Like dissolves like
- Polar solutes dissolve in polar solvents.
- Nonpolar solutes dissolve in nonpolar solvents.
- Need to predict or measure pKa (s) since charged groups help water solubility and conflict with fat solubility.

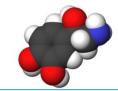
Suspension



Precipitate

From: LM Liu, A. Laio and A. Michaelides *Phys. Chem. Chem. Phys.*, 2011, 13, 13162

Drug Solubility depends on pH, pK_as


- For each drug, water and fat solubility vary.
- Relative solubilities depend on Chemical structure of the drug pH of the solution pKa values of the drug groups
- Solubility percentages depend on ionization ratios

Solubility, pH and pKa diagram

	[H+] Excess	[н+] Deficiency
Drug pKa	Solution pH	
	<7 (Acidic solution)	>7 (Basic solution)
<7 (Acidic drug, charge is -1 or 0)	pKa > pH Un-ionized, Fat soluble	pKa < pH (-) lonized, Water soluble
>7 (Basic drug, charge is 0 or +1)	pKa > pH (+) lonized, Water soluble	pKa < pH (0) Un-ionized, Fat soluble

Caution: In most information sources and databases the drug groups ionized at pH=7.4 groups will still be shown as neutral.

Norepinephrine in its unnatural neutral form

Henderson-Hasselbalch equation: calculating charged fraction

- The difference between the pH of the solution and the pK_a of the drug is the common logarithm of the ratio of ionized to unionized forms of the drug.
- For acidic drugs $Log(lonized/Unionized) = pH - pK_a, or$ $[l]/[U] = 10^{(pH-pKa)}$ $K_a = [H+][A-]/[HA]$

 $K_a = [H+][A-]/[HA]$ -log $K_a = -log([H+][A-]/[HA])$ -log $K_a = -log[H+] - log ([A-]/[HA])$ $pK_a = pH - log ([A-]/[HA])$ **log ([A-]/[HA]) = pH - pK**_a H.H.: a quantitative evaluation of charged/un-charged ratio

- Most drugs are weak acids or weak bases
- It is not all or nothing, there are always several species at different concentrations

$$\log\left(\frac{[A^{-}]}{[HA]}\right) = pH - pKa$$
$$\log\left(\frac{[B]}{[BH+]}\right) = pH - pKa$$

 For drugs with multiple acidic or basic groups there is a cross-dependence