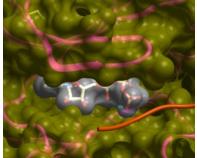
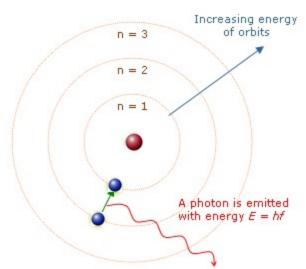

Physical Pharmacology. Molecular Structures and Drug Properties

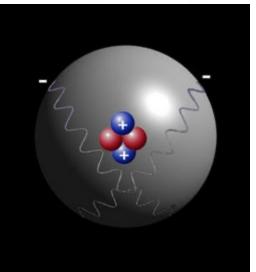

Thermodynamics: transitions, reactions, laws G=H-TS, $RT \ln K_{eq} = -\Delta G^o$, P_{osm}

- Radioactive & fluorescent drugs
- 2D, 3D Structure and Interactions of Drugs
- Interaction energetics
- Ionization
- Solubility
- Permeability
- Analytical methods

Radioactivity applications in pharmacology and medicine. Nuclear pharmacy

- Radio-pharmaceuticals : diagnostic or therapeutic agents, ⁴⁷Ca, ¹¹C,¹⁴C, ⁵⁷Co,¹⁸F,^{67,68}Ga, ^{123,124,131}I, Fe, Kr, ¹³N,...Tc,Xe,Yt
- SPECT : single-photon, ^{99m}Tc
- Positron Emission Tomography (PET) radiotracers (eg ¹⁸F and fluoro deoxy glucose, ¹⁸F-FDG)
- Surgery assistance




Quantum Description of Atoms and Molecules

- *Electrons* are described as probability waves around nuclei
- Electrons occupy discrete states: orbitals, one electron per state, two with opposite spins
- Transition between orbitals is associated with discrete energies and wave frequencies

E =**h** ν =**h** ω (ν of *f* in cycles, ω in radians)

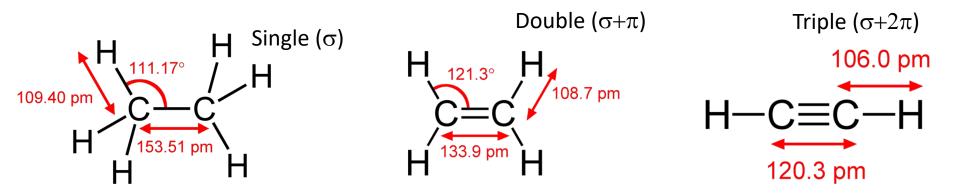
• Reduced Planck constant $\hbar = h/2\pi \approx 10^{-34} \text{ J s}$

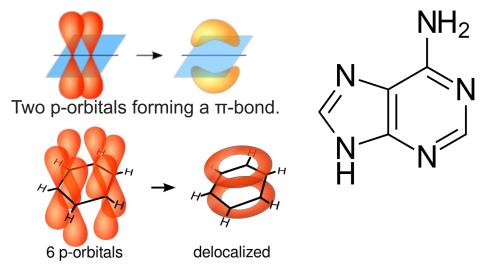
Schrödinger equation explains molecules, particles, nuclear reactions and transitions

 Schrödinger equation helps finding the energies *E_i* and shapes of the discrete orbitals (a.k.a. "wave functions" Ψ)

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r})\right]\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

Erwin Schrödinger

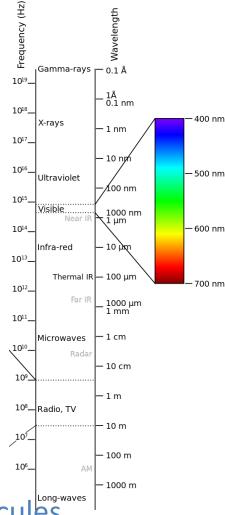

 All energies, electronic and vibrational properties of atoms and molecules are explained by the the equation


Molecular interactions: Why atoms repel each other at close distances?

- Electrons, protons and neutrons have "half-oddinteger" angular momentum (spin): 1/2ħ, 3/2ħ ,5/2ħ. They are called *fermions*.
- Sub-atomic particles with *integer* spin are called *bosons* (e.g. photons)
- The Pauli exclusion principle: Fermions
 (electrons, protons, neutrons) are "stiff": two
 fermions can not occupy the same quantum
 state.
- That is why atoms repel each other at close distances

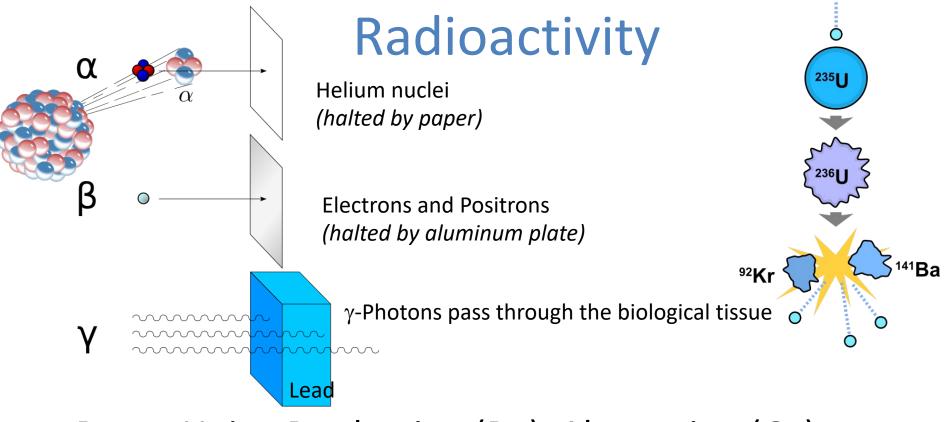
σ, π -bonding, bond types, transitions

Aromatic (delocalized electrons, flat structures)



Energies of photons, from Radioactivity to Fluorescence

Low energy transitions, drug binding

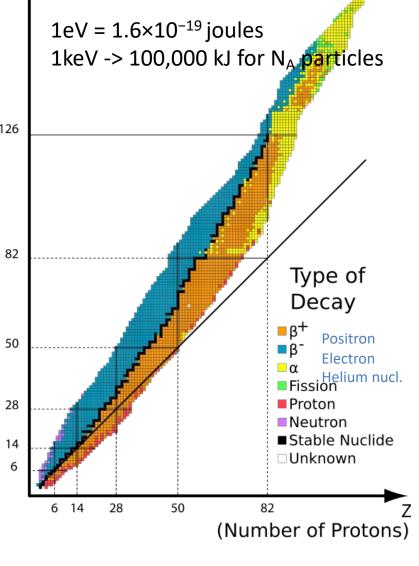

- A molecule can change its
 - *Electronic state* (excited electronic level >> RT, $\Delta E > 100 \text{ kJ/mol}$, which corresponds to ~1 eV)
 - Vibrational state (changes in bond lengths and bond angles, $\Delta E \sim 10$ kJ/mol)
 - Torsion and positional variables (∆E less than 2 kJ/mol , almost *continuous spectrum* for translation)
- At physiological T (RT≈2.5kJ/mol), the electronic states of a non-covalent drug are typically frozen into their ground states.

High energy particles **break** multiple bonds and molecules **Radio-pharmacology:** radioactive isotopes decay to make **high energy** alpha **particles**, protons, neutrons, electrons, positrons and γ rays

Isotopes : "same place" in Periodic table

- Atoms with the **same atomic number** but different mass numbers (i.e. *different number of NEUTRONS*) are called **isotopes**.
- ¹²C and ¹³C are stable.
 - "Radiocarbon dating" is based on ¹⁴C (halflife of ¹⁴C is about 5,730 years)

- Decay Units: Production (Bq), Absorption (Gy)
 Bq (Becquerel) = s⁻¹ is the number of decays per second (older: 1 Curie (Ci) = 3.7×10¹⁰ Bq)
 - **Gy (Gray)** = absorption of *one joule* of radiation energy *per kilogram* of matter


Also: **Sievert, Sv = Gy** for X-rays

 $1 \text{ Gy} = 1 \ rac{ ext{J}}{ ext{kg}} = 1 \ rac{ ext{m}^2}{ ext{s}^2}$

1 Sv = 1 joule/kilogram – a biological effect. deposit of a joule of radiation energy in a kilogram of human tissue. The equivalence to absorbed dose is denoted by Q.

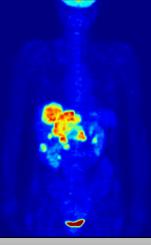
Radionuclides in Medicine: destruction or imaging

(Number of Neutrons)

- Unstable isotopes convert into more stable ones and produce gamma rays (most penetrating) and/or high energy particles α,p,n,β-,β+, γ
- Particles may destroy cells
- Radio-pharmacetical is injected, distributed in the body (may be in a carrier molecule, e.g. glucose), used for **imaging** or therapy

• Examples:

Diagnostic imaging of colorectal cancers:


- Technetium-99m -> γ
- ^{99m}Tc arcitumomab <1MeV
- Fluoro deoxy glucose

(Number of Protons) Treatment of hyperthyroidism with lodine

• I-131 (8 days) => $\gamma + \beta$ 971 keV

Lead container for iodine-123 capsule

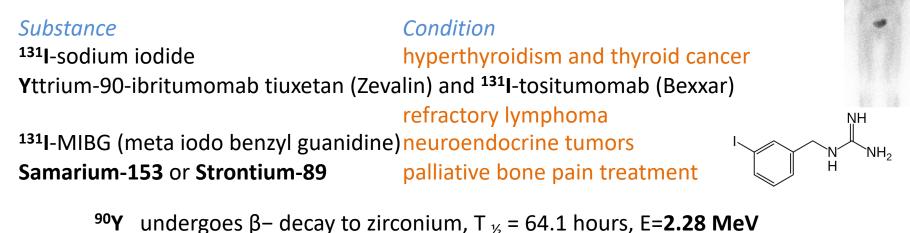
PET: positronemission tomography

Medical X-ray doses in Gray units

- For a solid epithelial tumor : 60 to 80 Gy, or Sv
- Lymphomas are treated with 20 to 40 Gy.
- Preventive doses are typically around 45–60 Gy in 1.8–2 Gy fractions for breast, head, and neck cancers.

Diagnostic doses

 The average radiation dose from an abdominal Xray is 0.7 millisieverts (0.0007 Sv), that from an abdominal CT scan is 8 mSv


High energy photons for diagnostics

Radiation doses of common imaging procedures in milli Sievers (mSv)

Radiation comes from either an external source or an injected/infused radioactive substance (e.g. lodine-123, Barium-130,131..)

		Procedure	Approximate effective radiation dose (mSv)	Approximate comparable time of natural background radiation exposure
N	ABDOMINAL REGION	Computed Tomography (CT) — Abdomen and Pelvis	7.7 mSv	2.6 years
		Computed Tomography (CT) — Abdomen and Pelvis, repeated with and without contrast material	15.4 mSv	5.1 years
		Computed Tomography (CT) — Colonography	6 mSv	2 years
		Intravenous Pyelogram (IVP)	3 mSv	1 year
		Barium Enema (Lower GI X-ray)	6 mSv	2 years
		Upper GI Study With Barium	6 mSv	2 years
	BONE	Lumbar Spine	1.4 mSv	6 months
		Extremity (hand, foot, etc.) X-ray	< 0.001 mSv	< 3 hours
R	CENTRAL NERVOUS SYSTEM	Computed Tomography (CT) — Brain	1.6 mSv	7 months
		Computed Tomography (CT) — Brain, repeated with and without contrast material	3.2 mSv	13 months
		Computed Tomography (CT) — Head and Neck	1.2 mSv	5 months
		Computed Tomography (CT) — Spine	8.8 mSv	3 years
K	CHEST	Computed Tomography (CT) — Chest	6.1 mSv	2 years
		Computed Tomography (CT) — Lung Cancer Screening	1.5 mSv	6 months
		Chest X-ray	0.1 mSv	10 days
	DENTAL	Dental X-ray	0.005 mSv	1 day
		Panoramic X-Ray	0.025 mSv	3 days
		Cone Beam CT	0.18 mSv	22 days
Y	HEART	Coronary Computed Tomography Angiography (CTA)	8.7 mSv	3 years
		Cardiac CT for Calcium Scoring	1.7 mSv	6 months
		Non-Cardiac Computed Tomography Angiography (CTA)	5.1 mSv	< 2 years
İ	MEN'S IMAGING	Bone Densitometry (DEXA)	0.001 mSv	3 hours
\bigotimes	NUCLEAR	Positron Emission Tomography — Computed Tomography (PET/CT) Whole body protocol	22.7 mSv	3.3 years
Ŷ	WOMEN'S IMAGING	Bone Densitometry (DEXA)	0.001 mSv	3 hours
		Screening Digital Mammography	0.21 mSv	26 days
		Screening Digital Breast Tomosynthesis (3-D Mammogram)	0.27 mSv	33 days

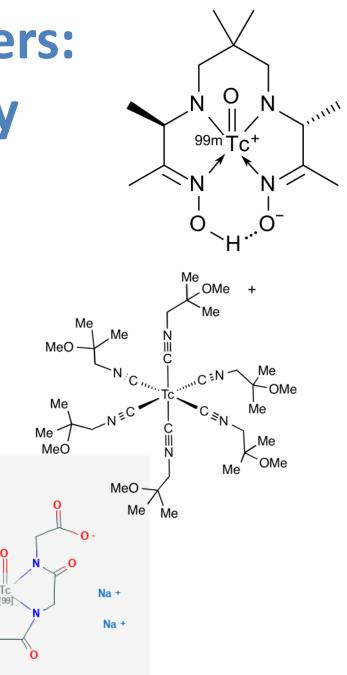
Radioactive decay: therapies

¹³¹I T $_{\frac{1}{2}}$ = 8 days (eg as potassium iodide or iodate, KI, or KIO₃)

$$egin{aligned} & {}^{131}_{53}\mathrm{I} \longrightarrow eta + ar{
u}_{\mathrm{e}} + {}^{131}_{54}\mathrm{Xe}^* + 606\,\mathrm{keV} \ & {}^{131}_{54}\mathrm{Xe}^* \longrightarrow {}^{131}_{54}\mathrm{Xe} + \gamma + 364\,\mathrm{keV} \end{aligned}$$

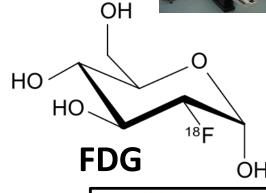
- Ionizing radiation, *potential hazard*:
 - Broken molecules, cells killed, anemia/neutropenia, immunogenicity, radiation burns
 - Mutations in somatic or germ cells, new neoplasms

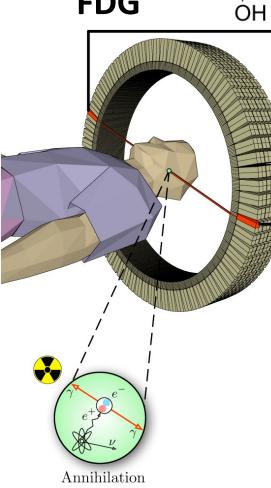
Mild Nuclear reactions for imaging $^{99m}TC \rightarrow ^{99}TC + \gamma$ ^{140 keV}


- ^{99m}Tc is a *metastable isomer* of ⁹⁹Tc
- ^{99m}Tc half-life is 6 hours (syringe is shielded)
- ^{99m}Tc is produced in hospitals from ⁹⁹Mo
- Source: ⁹⁹Mo (T_{1/2} =66 hours) is produced in nuclear reactors from ²³⁵U
- ^{99m}Tc chelators: pyrophosphate, exametazime, disofenin, oxidronate, arcitumomab, medronate, sestamibi,tetrofosmin, ...
- Unit conversion: 1eV corresponds to 96 kJ/mol, 23 kcal/mol

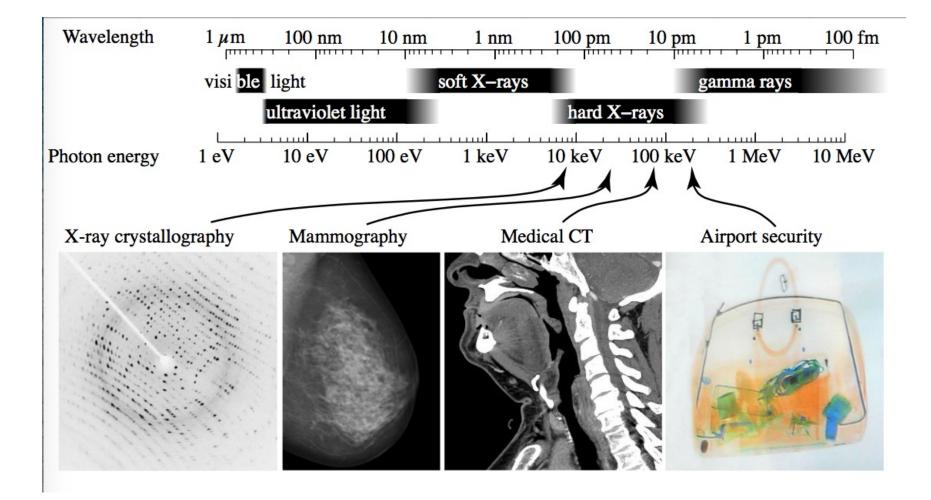
Example: ^{99m}Tc + targeting molecule to tumor-related lymph nodes *Lymphoseek*: mannosylated carrier (tilmanocept) binds to macrophage CD-206 receptors

Technetium-99m carriers: target organ delivery

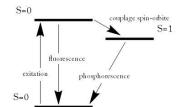

- Exametazine (Ceretec) for cerebral imaging in stoke
- Sestamibi for myocardial perfusion imaging
- Mercapto Acetyl Tri-Glycine (MAG3) for kidney imaging



PET: Positron-Emission Tomography



- Tracer: ¹⁸F in FluoroDeoxyGlucose. Other carriers possible for specific receptor destination
- **Destination:** Hungry cells eat FDG
- Reaction: ¹⁸F decays by emission of a positron e⁺ (t_{half-life} = 109 min).
- Annihilation: e⁺ + e⁻ → pair of 511 keV opposite photons; detection; computer tomography

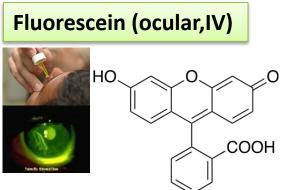


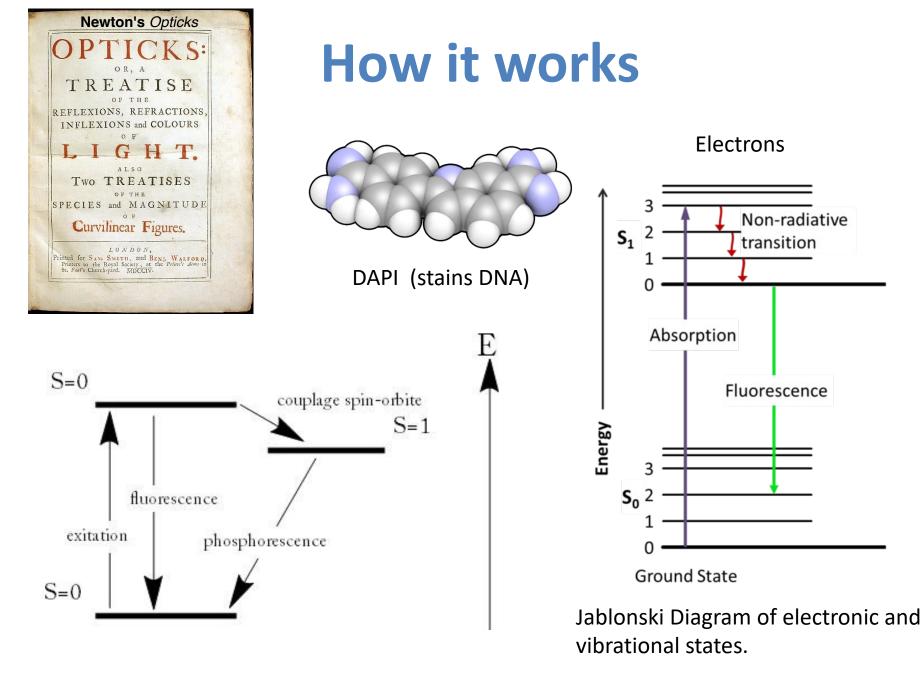
E=hv $\lambda = c/v$ c=3•10⁸ m/s, h=6.626•10⁻³⁴ J s

Luminescence is emission of light NOT from heat; a form of cold body radiation

- Fluorescence
- Phosphorescence

Fluorescence in Pharmacology


- **Sample**: Take a specimen (solution, semitransparent sample, tissue, crystal) with a fluorescent drug (or inject it).
- Excitation: Shine light of *higher* frequency (can be UV or even X-ray) at the sample
- Emission: Observe the light of *lower* frequency emitted by the the drug


Why fluorescence?

- Fluorescent microscopy
- High Contrast and Spatial resolution

Image courtesy of Photometrics

- High specificity via using antibodies and specific dies
- Live cell imaging with fluorescent proteins
- Drugs for interactive cancer imaging during surgery, ophthalmology etc.
- Multiple colors
- Quantitative

See Nico Stuurman (UCSF) lecture: http://www.youtube.com/watch?v=iPrZ84kHH2U