Target Pharmacology of Drugs

What is an intended drug target?

What is the real pharmacology?

Implications for drug discovery drug repurposing beneficial effects adverse effects mutations & drug resistance

 Magic Bullet, from a bullet that kills a specific invading microbe (eg Salvarsan vs syphilis) to a specific agent specific to a target

Protein-Ligand Binding

- Compound (ligand) binds to its target in 1:1 stoichiometry
- Association Reaction: P + L ⇔ PL
- K_a = [PL] / [P][L] (association constant, binding constant, affinity constant, binding affinity..., M⁻¹)
- $K_d = [P][L] / [PL] (dissociation constant, M) = 1/K_a$
- $\Delta G_{bind} = -RT \ln K_a$ AND $\Delta G_{bind} = RT \ln K_d$

Fraction of drug-bound targets depends on [D] and K_d

- Bosutinib targets
- Notations: **T** and **D**, a.k.a. **P** and **L**
- $pK_d = -log_{10} (K_d)$
- $pD = -log_{10}([D])$

 $K_{d} = [T][D] / [TD] \text{ (definition)}$ Bound/unbound target ratio $[TD] / [T] = [D] / K_{d}$ If we assume that D₀>>T₀, therefore [D₀]-[TD] ≈ [D₀], then we get

Bound Target Fraction Bound target/Total target $[TD]/[T_0] = D / (K_d+D)$ $[TD]/[T_0] \approx D_0/(K_d+D_0)$ Example: Bosutinib/Bosulif "BCR-ABL & SRC kinase inhibitor" for chronic myelogenous leukemia Actual Pharmacology (pKd values)

NH

(* optional) Derivation of the bound fraction equation

- Convenient notations for the derivation:
 - $-\mathbf{k}$ is K_d , \mathbf{c} is [PL] complex concentration
 - *d* is unbound drug or ligand, total drug is *d+c*
 - *t* is unbound target; total target is *t+c*
- Derivation:
 - Definition of K_d : k = td/c, therefore t/c = k/d
 - Bound fraction is $\mathbf{f} = c/(t+c)$, 1/f = (t+c)/c = (t/c) + 1
 - Substituting t/c for k/d: 1/f = k/d + 1 = (k+d)/d
 - From 1/f to f: f = d/(k+d)
 - Drug is at high concentration and free d is close to $[D_0]$
 - Back to the main notation: $\mathbf{f}=[PL]/[P_0] = [D_0]/(K_d + [D_0])$

Multiple targets of **Imatinib**. Target **Expression**, Drug-resistant **Mutants**

Example of a protein-ligand binding problem, from K to ΔG

 $\Delta G^0 = -RT \ln K$

• In the solution at equilibrium, the concentrations of unbound drug and protein are 13.5 nM and 0.5 nM, respectively, while the concentration of protein/drug complex is 4.5 nM. Find ΔG^{0}_{b} binding.

• Solution:

Reaction: P + L ⇔ PL $\mathbf{K}_{d} = [P][L] / [PL] = 13.5 \text{ nM} \times 0.5 \text{ nM}/ (4.5 \text{ nM}) = 1.5 \text{ nM}$ $K_{a} = 1 / (1.5 \times 10^{-9} \text{ M}) \sim 0.67 \times 10^{9} \text{ M}^{-1}$ $\Delta G^{0} = -RT \ln K_{a} = RT \ln K_{d}$ $\Delta G^{0} = (0.002 \text{ kcal/(K mol) * 300K)} \ln (1.5 \times 10^{-9}) \approx -12.19 \text{ kcal/mol}$

• Answer: $\Delta G_b^0 \approx -12.19$ kcal/mol

Shortcut: *K* vs ΔG , and K2/K1 to $\Delta \Delta G$

- $K_2/K_1 = 10$ $\Delta G^0 = -RT \ln K$
- $\Delta \Delta G = \Delta G_2 \Delta G_1 = -RT \ln K_2 + RT \ln K_1 = -RT \ln (K_2 / K_1)$
- $\Delta \Delta G = \Delta G_2 \Delta G_1 = -0.6 \ln 10 \approx -0.6 \times 2.3 \approx -1.4 \text{ kcal/mol}$
- K increases **10-fold**, if ΔG decreases by **1.4** kcal/mol
- For example: correspondence between ∆G and K_d for protein/ligand binding:
 1.4 kcal/mol → 10 fold K drop

∆G bind [kcal/mole]	K _d
-4.14	1 mM
-8.23	1 μM
-12.43	1 nM
-16.58	1 pM
-20.72	1 fM

Problem: Protein/drug binding, using K to ∆G shortcut

• A drug candidate was chemically optimized to reduce the therapeutic concentration 1000 times. Estimate the binding energy improvement required to reach that goal.

• Solution:

- 10-fold K_d improvement \equiv 1.4 kcal/mol decrease in ΔG
- 100-fold K_d improvement = 2.8 kcal/mol decrease in ΔG
- 1000-fold K_d improvement = 4.2 kcal/mol decrease in ΔG
- **Answer:** The binding energy needs to be decreased by 4.2 kcal/mol.

Protein-ligand binding: concentrations vs drug-bound target fraction

- Problem: In the solution at equilibrium, the concentrations of *unbound* drug and protein are 13.5 nM and 0.5 nM, respectively. Given the K_d of 1.5 nM, estimate the fraction of total protein which is bound (the binding reaction Reaction: P + L ⇔ PL, Dissociation: PL⇔ P + L).
- Solution:
 - $K_d = [P][L] / [PL] = 1.5 \times 10^{-9} M = 1.5 nM$
 - [PL] = [P][L] / K_d = 0.5×13.5 / (1.5) = 4.5 nM
 - [P₀]: Unbound protein 0.5 nM, bound protein 4.5 nM, total [P₀]=5 nM
 - Fraction bound = $[PL]/[P_0] = 4.5 / 5 = 90\%$
 - Also, directly from: $[PL]/[P_0] = D/(K_d+D) = 13.5/(13.5+1.5) = 0.9$
- **Answer:** 90% of the protein is bound.

Protein-Ligand Binding Equilibration

- Simplest case, 1:1 binding stoichiometry. P + L ↔ PL
- Full equation: ([PL] defined as x)
 - At equilibrium, $K_d = [P][L] / [PL] \Rightarrow$
 - $x \times K_d = (P_0 x)(L_0 x)$
 - $\mathbf{x} \times \mathbf{K}_{d} = x^{2} (\mathbf{P}_{0} + \mathbf{L}_{0})x + \mathbf{P}_{0}\mathbf{L}_{0}$
 - $x^2 (P_0 + L_0 + K_d) \times x + P_0 L_0 = 0$ quadratic equation
 - a = 1; $b = -(P_0 + L_0 + K_d)$; $c = P_0 L_0$
 - Solve $ax^2 + bx + c = 0$

	Protein	Ligand	Complex
Start (no equilibrium)	$[P] = P_0$	$[L] = L_0$	0
Equilibration	$[P] = P_0 - x$	$[L] = L_0 - x$	[PL] = <i>x</i>

Equilibrium [PL] as a function of total ligand, target and K_d

 Given a test tube with the initial protein concentration P₀, how much complex is formed upon addition of L₀ (concentration) of ligand with a given K_d?

$$x = L_{bound} = P_{bound} = \frac{P_0 + L_0 + K_d - \sqrt{\left(P_0 + L_0 + K_d\right)^2 - 4P_0L_0}}{2}$$

Example: bound fraction at equilibrium *from total concentrations*

• 0.30 μ M of protein is mixed with 0.36 μ M of drug. The dissociation constant is K_d = 0.01 μ M. Evaluate the bound protein concentration after the system equilibrates.

Solution:

	Protein	Ligand	Complex
Start (no equilibrium)	$[P] = P_0$	$[L] = L_0$	0
Equilibrium	$[P] = P_0 - x$	$[L] = L_0 - x$	[PL] = <i>x</i>

 $x^2 - (P_0 + L_0 + K_d) \times x + P_0 L_0 = 0$ – quadratic Assuming that x, P₀, L₀, and K_d are all measured in the same units (e.g. μ M), we can cancel out the prefix-factor (e.g. 10⁻⁶)

Example continued

★ a = 1
★ b = - (0.30+0.36+0.01) = -0.67
★ c = 0.30 × 0.36 = 0.108
★ Solve $ax^2 + bx + c = 0$ ★ x = (- b ± √(b² - 4ac)) / 2a = 0.27 µM or 0.40 µM
★ x cannot exceed P₀ or L₀, so x = 0.27 µM (use the solution with -)

	Protein	Ligand	Complex
Start (no equilibrium)	[P] = 0.3 μM	[L] = 0.36 μM	0
Equilibration	[P] – <i>x</i> = 0.03μM	[L] – <i>x</i> = 0.09µM	<i>x</i> = 0.27μM

<code> And, BTW, (0.03 μ M \times 0.09 μ M) / 0.27 μ M = 0.01 μ M = Kd</code>

• **Answer:** 0.27µM

Total protein vs K_d : $K_d = [P][L] / [PL]$ Two common cases

- 1. True for most biological targets in vivo
- $[\mathbf{P}_{total}] << \mathbf{K}_{d} \Rightarrow [P] << \mathbf{K}_{d} \Rightarrow [P] / \mathbf{K}_{d} << 1$ [PL] << [L]
- Ligand is not depleted by binding to the protein target

2. True for albumin, antitrypsin, abundant plasma proteins

- $[\mathbf{P}_{total}] > \mathbf{K}_{d} \implies [P] \sim \mathbf{K}_{d} \implies [P] / \mathbf{K}_{d} \sim 1$ $[\mathbf{PL}] \sim [\mathbf{L}]$
- Ligand is depleted by binding to the protein target
- Only unbound ligand fraction acts on therapeutic targets.

[Target] <K_d< [Ligand]

 $K_{d} = [P][L] / [PL]$

- $P_{total} \ll K_d$ and [PL] \ll [L]
- $[L_{total}] \approx [L]$
- Target bound/unbound ratio (from definition of K_d):
 [PL] / [P] = [L] / K_d ≈ [L_{total}] / K_d
- When $[L_{total}] \approx K_d$, [PL] = [P], i.e.

K_d is the ligand concentration at which 50% target is bound.

- Similarly, [L_{total}] ≈ Kd × [PL]/[P] for any bound/unbound ratio.
- Fraction of bound receptor: [PL] / [P_{total}] \approx [L_{total}] / (K_d+[L_{total}])

Example: [*total Lig*] ≈ ([PL]/[P]) K_d

 The concentration of the target protein in the patient's body is 5 pM. Given a drug with K_d of 10 nM, what concentration of the drug is needed for 80% of the protein to be bound?

• Solution:

$$\label{eq:relation} \begin{split} &[P] << K_d \\ & \text{Desired [PL]/[P] ratio is 80/20 = 4/1} \\ & \text{Total ligand = [PL]/[P] } \times K_d \approx 40 n M \\ & \text{Another solution: bound target fraction is 0.8 = x/(x+K_d), x=40 n M \end{split}$$

- **Answer:** ≈ 40 nM
- Note: if K_d is 10nM, we need 90 nM drug for 90% bound protein, and 190 nM for 95% bound protein
- Dose: 90nM for 500g/mole drug and 30L corresponds to 1.35mg dose

Case of high protein concentration

 $K_{d} = [P][L] / [PL]$

- P_{tot} > K_d ; [PL] is proportional to [L]
- If protein is in excess, i.e. [PL] << [P] and $[P_{tot}] \approx [P]$
- Ligand bound / unbound ratio (from definition of K_d):
 [LP] / [L] = [P] / K_d ~ [P_{tot}] / K_d
- $[P_{tot}] / K_d$ defines bound/unbound ratio for the ligand
- Bound ligand fraction = $[P_{tot}] / ([P_{tot}] + K_d)$

High affinity drug-albumin binding

- **Problem:** K_d (Albumin, warfarin) is ~5 μ M, calculate drug fraction found to albumin in %, assuming albumin in physiological range or 35 to 50 g/L. MM = 66.5 kDa
- Solution:
 - $[P_{tot}] / ([P_{tot}] + K_d)$
 - with albumin concentration at 526 $\mu\text{M}:$ 526 / 531 ~ 99.05%
 - with albumin concentration at 752 μM : 752 / 757 ~ 99.34%
- Note: unbound warfarin varies between 0.66% and ~0.95%, i.e. 43% increase for a skinny fasting person
- For drugs with high plasma protein binding, small changes in plasma protein can dramatically affect free drug concentration.

Low affinity drug-albumin binding

- Example: K_d (Albumin, drug B) is ~5 mM, calculate albumin binding in %, assuming albumin concentration is in a physiological range of 450 to 750 μM.
- Solution:
 - Bound drug fraction: f=D_{albumin_bound} / D₀ \approx [P_{tot}] / ([P_{tot}] + K_d)
 - with albumin concentration at 450 μM : f = 450 / 5450 ~ 8.3%
 - with albumin concentration at 750 μM : f = 750 / 5750 ~ 13%
- **Unbound** drug B (1-f, or 100(1-f)[%]) varies between 87% and 91.7%, only 5.5% increase for a skinny fasting person
- Variations of plasma concentrations of unbound drug B are not so dramatic.