Target Pharmacology of Drugs

What is an intended drug target?

What is the real pharmacology?

Implications for
drug discovery drug repurposing beneficial effects adverse effects mutations \& drug resistance

- Magic Bullet, from a bullet that kills a specific invading microbe (eg Salvarsan vs syphilis) to a specific agent specific to a target

Protein-Ligand Binding

- Compound (ligand) binds to its target in 1:1 stoichiometry
- Association Reaction: $P+L \Leftrightarrow P L$
- $K_{a}=[P L] /[P][L]$ (association constant, binding constant, affinity constant, binding affinity ..., M^{-1})
- $K_{d}=[\mathrm{P}][\mathrm{L}] /[\mathrm{PL}]$ (dissociation constant, M$)=1 / K_{a}$
- $\Delta \mathrm{G}_{\text {bind }}=-R T \ln K_{a} \quad$ AND $\quad \Delta \mathrm{G}_{\text {bind }}=R T \ln K_{d}$
- K_{d} unit is M (moles/Liter) - Other K_{d} units:

Milli $\left(10^{-3}\right)$: mM , or
$\operatorname{Micro}\left(10^{-6}\right): ~ \mu \mathrm{M} / \mathrm{uM}$
Nano (10-9): nM
Pico $\left(10^{-12}\right): ~ p M$
Femto(10-15): fM

Fraction of drug-bound targets depends on [D] and K_{d}

- Bosutinib targets
- Notations: T and D, a.k.a. P and L
- $\mathrm{pK}_{\mathrm{d}}=-\log _{10}\left(\mathrm{~K}_{\mathrm{d}}\right)$
- pD $=-\log _{10}([\mathrm{D}])$

$\mathbf{K}_{\mathrm{d}}=[\mathbf{T}][\mathbf{D}] /[\mathbf{T D}]$ (definition)

Bound/unbound target ratio $[T D] /[T]=[D] / K_{d}$
If we assume that $\mathrm{D}_{0} \gg \mathrm{~T}_{0}$, therefore $\left[\mathrm{D}_{0}\right]-[\mathrm{TD}] \approx\left[\mathrm{D}_{0}\right]$, then we get

Bound Target Fraction Bound target/Total target $[T D] /\left[T_{0}\right]=D /\left(K_{d}+D\right)$ $[T D] /\left[T_{0}\right] \approx \mathbf{D}_{0} /\left(K_{d}+D_{0}\right)$

Example: Bosutinib/Bosulif "BCR-ABL \& SRC kinase inhibitor" for chronic myelogenous leukemia Actual Pharmacology (pKd values)

Derivation of the bound fraction equation

- Convenient notations for the derivation:
$-\boldsymbol{k}$ is $\mathrm{K}_{\mathrm{d}}, \boldsymbol{c}$ is [PL] complex concentration
- d is unbound drug or ligand, total drug is $\boldsymbol{d}+\boldsymbol{c}$
- \boldsymbol{t} is unbound target; total target is $\boldsymbol{t} \boldsymbol{\boldsymbol { c }}$
- Derivation:
- Definition of $\mathrm{K}_{\mathrm{d}}: \boldsymbol{k}=\boldsymbol{t d} / \boldsymbol{c}$, therefore $\boldsymbol{t} \boldsymbol{c}=\boldsymbol{k} / \boldsymbol{d}$
- Bound fraction is $\boldsymbol{f}=c /(t+c), 1 / f=(t+c) / c=(t / c)+1$
- Substituting t / c for $k / d: 1 / f=k / d+1=(k+d) / d$
- From $1 / f$ to $f: f=d /(k+d)$
- Drug is at high concentration and free d is close to $\left[D_{0}\right]$
- Back to the main notation: $\mathbf{f}=[\mathrm{PL}] /\left[\mathrm{P}_{0}\right]=\left[\mathrm{D}_{0}\right] /\left(\mathrm{K}_{\mathrm{d}}+\left[\mathrm{D}_{0}\right]\right)$

Multiple targets of Imatinib. Target Expression, Drug-resistant Mutants

Example of a protein-ligand binding problem, from K to $\Delta \mathbf{G}$

$$
\Delta G^{0}=-R T \ln K
$$

- In the solution at equilibrium, the concentrations of unbound drug and protein are 13.5 nM and 0.5 nM , respectively, while the concentration of protein/drug complex is 4.5 nM . Find $\Delta G^{0}{ }_{b}$ binding.
- Solution:

$$
\begin{aligned}
& \text { Reaction: } \mathrm{P}+\mathrm{L} \Leftrightarrow \mathrm{PL} \\
& \mathrm{~K}_{\mathrm{d}}=[\mathrm{P}][\mathrm{L}] /[\mathrm{PL}]=13.5 \mathrm{nM} \times 0.5 \mathrm{nM} /(4.5 \mathrm{nM})=1.5 \mathrm{nM} \\
& \mathrm{~K}_{\mathrm{a}}=1 /\left(1.5 \times 10^{-9} \mathrm{M}\right) \sim 0.67 \times 10^{9} \mathrm{M}^{-1} \\
& \Delta \mathrm{G}^{0}=-R T \ln \mathrm{~K}_{\mathrm{a}}=\mathrm{RT} \ln \mathrm{~K}_{\mathrm{d}} \\
& \Delta \mathrm{G}^{0}=(0.002 \mathrm{kcal} /(\mathrm{K} \mathrm{~mol}) * 300 \mathrm{~K}) \ln \left(1.5 \times 10^{-9}\right) \approx-12.19 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

- Answer: $\Delta G^{0}{ }_{b} \approx-12.19 \mathrm{kcal} / \mathrm{mol}$

Shortcut: K vs ΔG, and K2/K1 to $\Delta \Delta G$

- $\mathrm{K}_{2} / \mathrm{K}_{1}=10$

$$
\Delta G^{0}=-R T \ln K
$$

- $\Delta \Delta \boldsymbol{G}=\Delta \mathrm{G}_{2}-\Delta \mathrm{G}_{1}=-R T \ln \mathrm{~K}_{2}+R T \ln \mathrm{~K}_{1}=-\mathrm{RT} \ln \left(\mathrm{K}_{2} / \mathrm{K}_{1}\right)$
- $\Delta \Delta \boldsymbol{G}=\Delta G_{2}-\Delta G_{1}=-0.6 \ln 10 \approx-0.6 \times 2.3 \approx-1.4 \mathrm{kcal} / \mathrm{mol}$
- K increases 10 -fold, if ΔG decreases by $1.4 \mathrm{kcal} / \mathrm{mol}$
- For example: correspondence between ΔG and K_{d} for protein/ligand binding:

$\Delta \mathbf{G}$ bind $[\mathbf{k c a l} /$ mole $]$	$\mathbf{K}_{\mathbf{d}}$
-4.14	1 mM
-8.23	$1 \mu \mathrm{M}$
-12.43	1 nM
-16.58	1 pM
-20.72	1 fM

Problem: Protein/drug binding, using K to $\Delta \mathbf{G}$ shortcut

- A drug candidate was chemically optimized to reduce the therapeutic concentration 1000 times. Estimate the binding energy improvement required to reach that goal.
- Solution:
- 10 -fold K_{d} improvement $\equiv 1.4 \mathrm{kcal} / \mathrm{mol}$ decrease in ΔG
- 100 -fold K_{d} improvement $\equiv 2.8 \mathrm{kcal} / \mathrm{mol}$ decrease in ΔG
- 1000 -fold K_{d} improvement $\equiv 4.2 \mathrm{kcal} / \mathrm{mol}$ decrease in ΔG
- Answer: The binding energy needs to be decreased by 4.2 $\mathrm{kcal} / \mathrm{mol}$.

Protein-ligand binding: concentrations vs drug-bound target fraction

- Problem: In the solution at equilibrium, the concentrations of unbound drug and protein are 13.5 nM and 0.5 nM , respectively. Given the K_{d} of 1.5 nM , estimate the fraction of total protein which is bound (the binding reaction Reaction: $P+L \Leftrightarrow P L$, Dissociation: $P L \Leftrightarrow P+L)$.
- Solution:
- $\mathrm{K}_{\mathrm{d}}=[\mathrm{P}][\mathrm{L}] /[\mathrm{PL}]=1.5 \times 10^{-9} \mathrm{M}=1.5 \mathrm{nM}$
- $[P L]=[P][L] / K_{d}=0.5 \times 13.5 /(1.5)=4.5 \mathrm{nM}$
- [P_{0}]: Unbound protein 0.5 nM , bound protein 4.5 nM , total $\left[\mathrm{P}_{0}\right]=5 \mathrm{nM}$
- Fraction bound $=[P L] /\left[P_{0}\right]=4.5 / 5=90 \%$
- Also, directly from: $[P L] /\left[P_{0}\right]=\mathrm{D} /\left(\mathrm{K}_{\mathrm{d}}+\mathrm{D}\right)=13.5 /(13.5+1.5)=0.9$
- Answer: 90% of the protein is bound.

Protein-Ligand Binding Equilibration

- Simplest case, 1:1 binding stoichiometry. $\mathbf{P}+\mathbf{L} \leftrightarrow \mathbf{P L}$
- Full equation: ([PL] defined as \boldsymbol{x})
- At equilibrium, $\mathbf{K}_{\mathbf{d}}=[\mathbf{P}][\mathrm{L}] /[\mathrm{PL}] \Rightarrow$
- $x \times \mathrm{K}_{\mathrm{d}}=\left(\mathrm{P}_{0}-x\right)\left(\mathrm{L}_{0}-x\right)$
- $\mathrm{x} \times \mathrm{K}_{\mathrm{d}}=x^{2}-\left(\mathrm{P}_{0}+\mathrm{L}_{0}\right) x+\mathrm{P}_{0} \mathrm{~L}_{0}$
- $x^{2}-\left(\mathrm{P}_{0}+\mathrm{L}_{0}+\mathrm{K}_{\mathrm{d}}\right) \times x+\mathrm{P}_{0} \mathrm{~L}_{0}=0$ - quadratic equation
- $a=1 ; b=-\left(P_{0}+L_{0}+K_{d}\right) ; c=P_{0} L_{0}$
- Solve $a x^{2}+b x+c=0$

	Protein	Ligand	Complex
Start (no equilibrium)	$[P]=P_{0}$	$[\mathrm{~L}]=\mathrm{L}_{0}$	0
Equilibration	$[\mathrm{P}]=\mathrm{P}_{0}-x$	$[\mathrm{~L}]=\mathrm{L}_{0}-x$	$[\mathrm{PL}]=x$

Equilibrium [PL] as a function of total ligand, target and K_{d}

- Given a test tube with the initial protein concentration P_{0}, how much complex is formed upon addition of L_{0} (concentration) of ligand with a given K_{d} ?

$$
x=L_{b o u n d}=P_{b o u n d}=\frac{P_{0}+L_{0}+K_{d}-\sqrt{\left(P_{0}+L_{0}+K_{d}\right)^{2}-4 P_{0} L_{0}}}{2}
$$

Example: bound fraction at

equilibrium from total concentrations

- $0.30 \mu \mathrm{M}$ of protein is mixed with $0.36 \mu \mathrm{M}$ of drug. The dissociation constant is $\mathrm{K}_{\mathrm{d}}=0.01 \mu \mathrm{M}$. Evaluate the bound protein concentration after the system equilibrates.
- Solution:

	Protein	Ligand	Complex
Start (no equilibrium)	$[P]=P_{0}$	$[L]=L_{0}$	0
Equilibrium	$[P]=P_{0}-\boldsymbol{x}$	$[L]=L_{0}-\boldsymbol{x}$	$[P L]=\boldsymbol{x}$

$x^{2}-\left(\mathrm{P}_{0}+\mathrm{L}_{0}+\mathrm{K}_{d}\right) \times x+\mathrm{P}_{0} \mathrm{~L}_{0}=0-$ quadratic
Assuming that $x, \mathrm{P}_{0}, \mathrm{~L}_{0}$, and K_{d} are all measured in the same units (e.g. $\mu \mathrm{M}$), we can cancel out the prefix-factor (e.g. 10^{-6})

Example continued

* $a=1$
* $b=-(0.30+0.36+0.01)=-0.67$
$c=0.30 \times 0.36=0.108$
*Solve $a x^{2}+b x+c=0$
* $\left.x=\left(-b \pm \sqrt{(} b^{2}-4 a c\right)\right) / 2 a=0.27 \mu \mathrm{M}$ or $0.40 \mu \mathrm{M}$
* x cannot exceed P_{0} or L_{0}, so $x=0.27 \mu \mathrm{M}$ (use the solution with -)

	Protein	Ligand	Complex
Start (no equilibrium)	$[\mathrm{P}]=0.3 \mu \mathrm{M}$	$[\mathrm{L}]=0.36 \mu \mathrm{M}$	0
Equilibration	$[\mathrm{P}]-x=0.03 \mu \mathrm{M}$	$[\mathrm{L}]-x=0.09 \mu \mathrm{M}$	$x=0.27 \mu \mathrm{M}$

*And, BTW, $(0.03 \mu \mathrm{M} \times 0.09 \mu \mathrm{M}) / 0.27 \mu \mathrm{M}=0.01 \mu \mathrm{M}=\mathrm{Kd}$

- Answer: $0.27 \mu \mathrm{M}$

Total protein vs K_{d} :
 $\mathrm{K}_{\mathrm{d}}=[\mathrm{P}][\mathrm{L}] /[\mathrm{PL}]$ Two common cases

1. True for most biological targets in vivo

- $\left[\mathrm{P}_{\text {total }}\right] \ll \mathrm{K}_{\mathrm{d}} \quad \Rightarrow \quad[\mathrm{P}] \ll \mathrm{K}_{\mathrm{d}} \quad \Rightarrow \quad[\mathrm{P}] / \mathrm{K}_{\mathrm{d}} \ll 1$ [PL] \ll [L]
- Ligand is not depleted by binding to the protein target

2. True for albumin, antitrypsin, abundant plasma proteins

- $\left[\mathbf{P}_{\text {total }}\right]>\mathrm{K}_{\mathrm{d}} \quad \Rightarrow \quad[\mathrm{P}] \sim \mathrm{K}_{\mathrm{d}} \quad \Rightarrow \quad[\mathrm{P}] / \mathrm{K}_{\mathrm{d}} \sim 1$ [PL] ~ [L]
- Ligand is depleted by binding to the protein target
- Only unbound ligand fraction acts on therapeutic targets.

[Target] $<\mathrm{K}_{\mathrm{d}}<$ [Ligand]

- $\mathrm{P}_{\text {total }} \ll \mathrm{K}_{\mathrm{d}}$ and [PL] $\ll[\mathrm{L}]$

$$
\mathrm{K}_{\mathrm{d}}=[\mathrm{P}][\mathrm{L}] /[\mathrm{PL}]
$$

- $\left[L_{\text {total }}\right] \approx[L]$
- Target bound/unbound ratio (from definition of K_{d}):

$$
[\mathrm{PL}] /[\mathrm{P}]=[\mathrm{L}] / \mathrm{K}_{\mathrm{d}} \approx\left[\mathrm{~L}_{\text {total }}\right] / \mathrm{K}_{\mathrm{d}}
$$

- When $\left[L_{\text {total }} \approx K_{d},[P L]=[P]\right.$, i.e.

K_{d} is the ligand concentration at which 50% target is bound.

- Similarly, $\left[L_{\text {total }}\right] \approx \mathrm{Kd} \times[\mathrm{PL}] /[\mathrm{P}]$ for any bound/unbound ratio.
- Fraction of bound receptor: $[\mathrm{PL}] /\left[\mathrm{P}_{\text {total }}\right] \approx\left[\mathrm{L}_{\text {total }}\right] /\left(\mathrm{K}_{\mathrm{d}}+\left[\mathrm{L}_{\text {totala }}\right]\right)$

Example: [total Lig] $\approx([P L] /[P]) \mathrm{K}_{\mathrm{d}}$

- The concentration of the target protein in the patient's body is 5 pM . Given a drug with K_{d} of 10 nM , what concentration of the drug is needed for 80% of the protein to be bound?
- Solution:
[P] $\ll \mathrm{K}_{\mathrm{d}}$
Desired [PL]/[P] ratio is $80 / 20=4 / 1$
Total ligand $=[P L] /[P] \times K_{d} \approx 40 \mathrm{nM}$
Another solution: bound target fraction is $0.8=\mathrm{x} /\left(\mathrm{x}+\mathrm{K}_{\mathrm{d}}\right), \mathrm{x}=40 \mathrm{nM}$
- Answer: $\approx 40 \mathrm{nM}$
- Note: if K_{d} is 10 nM , we need 90 nM drug for 90% bound protein, and 190 nM for 95% bound protein
- Dose: 90 nM for $500 \mathrm{~g} / \mathrm{mole}$ drug and 30L corresponds to 1.35 mg dose

Case of high protein concentration

- $\mathrm{P}_{\text {tot }}>\mathrm{K}_{\mathrm{d}} ;[\mathrm{PL}]$ is proportional to $[\mathrm{L}]$

$$
\mathrm{K}_{\mathrm{d}}=[\mathrm{P}][\mathrm{L}] /[\mathrm{PL}]
$$

- If protein is in excess, i.e. $[P L] \ll[P]$ and $\left[P_{\text {tot }}\right] \approx[P]$
- Ligand bound / unbound ratio (from definition of K_{d}):

$$
[\mathrm{LP}] /[\mathrm{L}]=[\mathrm{P}] / \mathrm{K}_{\mathrm{d}} \sim\left[\mathrm{P}_{\mathrm{tot}}\right] / \mathrm{K}_{\mathrm{d}}
$$

- $\left[P_{\text {tot }}\right] / K_{d}$ defines bound/unbound ratio for the ligand
- Bound ligand fraction $=\left[\mathrm{P}_{\text {tot }}\right] /\left(\left[\mathrm{P}_{\text {tot }}\right]+\mathbf{K}_{\mathrm{d}}\right)$

High affinity drug-albumin binding

- Problem: K_{d} (Albumin, warfarin) is $\sim 5 \mu \mathrm{M}$, calculate drug fraction found to albumin in \%, assuming albumin in physiological range or 35 to $50 \mathrm{~g} / \mathrm{L} . \mathrm{MM}=66.5 \mathrm{kDa}$
- Solution:
- $\left[\mathrm{P}_{\mathrm{tod}}\right] /\left(\left[\mathrm{P}_{\mathrm{tot}}\right]+\mathrm{K}_{\mathrm{d}}\right)$
- with albumin concentration at $526 \mu \mathrm{M}: 526$ / 531 ~ 99.05%
- with albumin concentration at $752 \mu \mathrm{M}: 752$ / $757 \sim 99.34 \%$
- Note: unbound warfarin varies between 0.66\% and $\sim 0.95 \%$, i.e. 43% increase for a skinny fasting person
- For drugs with high plasma protein binding, small changes in plasma protein can dramatically affect free drug concentration.

Low affinity drug-albumin binding

- Example: K_{d} (Albumin, drug B) is $\sim 5 \mathrm{mM}$, calculate albumin binding in \%, assuming albumin concentration is in a physiological range of 450 to $750 \mu \mathrm{M}$.
- Solution:
- Bound drug fraction: $f=D_{\text {albumin_bound }} / D_{0} \approx\left[P_{\text {tot }}\right] /\left(\left[P_{\text {tot }}\right]+K_{d}\right)$
- with albumin concentration at $450 \mu \mathrm{M}: f=450 / 5450 \sim 8.3 \%$
- with albumin concentration at $750 \mu \mathrm{M}: \mathrm{f}=750 / 5750 \sim 13 \%$
- Unbound drug B (1-f, or 100(1-f)[\%]) varies between 87\% and 91.7%, only 5.5% increase for a skinny fasting person
- Variations of plasma concentrations of unbound drug B are not so dramatic.

