Mixtures, Equilibrium \& Chemical Potential μ

From minimizing Gibbs Free Energy to the Equilibrium Constant (K)

equlibrium

Single compartment

- Total G -> minumum
- Solutions
- Suspensions
- Colloids (milk, nanoparticles, colloidal silver, sulphur, gold)

Two compartments

- Chemical potential μ_{A} of each component is equal in both compartments in equilibrium

Mixtures: Chemical Potential

- $G=H-T S$ is an extensive variable
- For a pure substance J the chemical potential is defined as molar Gibb's energy: $\mu_{\jmath} \equiv G_{m}=$ G / n
- Chemical Potential is molar Free Energy
 of one chemical ingredient in a mixture
- In a mixture of $n_{1}, n_{2}, . ., n_{J}$
$-n_{j}$ is the number of moles of compound j

$$
\mu_{J}=\left(\frac{\partial G}{\partial n_{J}}\right)_{p, T, n_{i \neq J}}
$$

The chemical potential in solution

Chemical potential (free energy per particle i) in solution increases with log(concentration) for entropic reasons (less states):
$\mu_{i}^{g a s}=\mu_{i}^{P_{0}}+R T \ln \frac{P_{i}}{P_{0}}$

$$
\begin{gathered}
\mu_{i}=\mu_{i}^{c_{0}}+R T \ln \frac{c_{i}}{c_{0}} \\
u^{=}=\mu^{c_{0}=1}+R T \ln c .
\end{gathered}
$$

For non-ideal solutions: c_{i} becomes effective concentration a_{i} The chemical activity a_{i}, an effective particle concentration, replaces c_{i} for non-ideal solutions: $a_{i}=\gamma_{i} \cdot c_{i}$

- $a_{i} \equiv$ activity of species i;
- $\gamma_{i} \equiv$ activity coefficient, $\gamma_{i}=1, a_{i}=c_{i}$ for ideal solution;
- $c_{i}=$ concentration of species i, c_{0} is 'standard or reference' concentrations for which the chemical potential is known

Equilibrium Concentrations vs $\Delta \mathrm{G}^{0}$ Reactants Products

$$
\nu_{r 1} R_{1}+\nu_{r 2} R_{2}+\ldots \leftrightarrow \nu_{p 1} P_{1}+\nu_{p 2} P_{2}+\ldots
$$

- Reaction (v 's are stochiometric coefficients)
- Equilibrium constant
- Reaction Free Energy
- Equilibrium
concentrations are related to ΔG^{0}

$$
K \equiv \frac{C_{\text {product } 1}^{v_{p 1}} C_{\text {product } 2 \cdots}^{v_{p 2}} \cdots}{C_{\text {react } 1}^{v_{r 1}} C_{\text {react } 2 \cdots}^{v_{r 2}} \cdots}
$$

$$
\Delta G^{0} \equiv \sum_{\text {products }} \nu_{p i} \mu_{i}^{0}-\sum_{\text {reactants }} \nu_{r j} u_{j}^{0}
$$

$$
\ln K=-\frac{\Delta G_{r e a c t i o n}^{0}}{R T}
$$

The Equilibrium Constant, K and concentration ratios. Examples

For reaction: $\mathrm{A} \leftrightarrow \mathrm{B}: \quad K=C_{B} / C_{A}$
For reaction: $\quad \mathrm{AA}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
the equilibrium constant is written as: $K=\frac{c_{C}^{c} c_{D}^{d}}{c_{A}^{a} c_{B}^{b}}$

- Units of K depend on the reaction stoichiometry,
- Examples:
- $\mathrm{A} \leftrightarrow \mathrm{B}: \quad K=C_{B} / C_{A} \quad K$ is dimensionless
- $\mathrm{D}+\mathrm{R} \leftrightarrow \mathrm{DR}: K=C_{D R} /\left(C_{D} C_{R}\right) \quad \mathrm{K}\left[\mathrm{M}^{-1}\right],[\mathrm{M}]$ for mole/liter
- $\mathrm{DR} \leftrightarrow \mathrm{D}+\mathrm{R}: K=\left(C_{D} C_{R}\right) / C_{D R} \quad \mathrm{~K}[\mathrm{M}]$

Review: concentrations and energies

Relationship between Gibbs free energy of reaction and the equilibrium concentrations is defined by constant $K \quad \Delta_{\text {reacion }} G^{o}=\Delta H^{o}-T \Delta S^{o}$

Where $\boldsymbol{G}^{\boldsymbol{0}}$ comes from chem. potentials (molar free energies) at standard 1 M concentrations, while \mathbf{K} is calculated at equilibrium concentrations.

Example Reaction: Chiral Transition

$$
\ln K=\frac{-\Delta_{\text {reaction }} G^{o}}{R T}
$$

- ΔG^{0} contains Enthalpic $\left(\Delta H^{0}\right)$ and Entropic $\left(-T \Delta S^{0}\right)$ contributions. How do we measure them?
- Example: Levosalbutamol vs Salbutamol (racemic)

- Chiral transition $L \leftrightarrow R: \ln \left(\mathrm{C}_{\mathrm{R}} / \mathrm{C}_{\mathrm{L}}\right)=-\left(\mathrm{G}_{\mathrm{R}^{-}}-\mathrm{G}_{\mathrm{L}}\right) /(\mathrm{RT})$

> "As a bronchodilator, it is used to treat asthma and Chronic obstructive pulmonary disease (COPD). In general, levosalbutamol has similar pharmacokinetic and pharmacodynamic properties to salbutamol; however, its manufacturer, Sepracor, has implied (although not directly claimed) that the presence of only the R-enantiomer produces fewer side effects." Wikipedia

Finding Enthalpy and Entropy from K at several temperatures: van't Hoff Equation

Alternative to Calorimetry to determine $\Delta \mathrm{G}^{0}$. Idea:

- Equilibrium concentrations and K depend on T
- Higher T will favor the reaction direction with gain of entropy.
- Recipe: Measure K (T) and derive ΔG^{0} from that dependence

Substituting $\Delta \mathrm{G}$ for $\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$:

$$
\ln K=-\frac{\Delta_{r} H^{o}}{R T}+\frac{\Delta_{r} S^{o}}{R}
$$

Equilibrium constant at two different temperatures:

Subtracting:

$$
\begin{aligned}
& \ln K_{1}=\frac{-\Delta_{r} H^{o}}{R T_{1}}+\frac{\Delta_{r} S^{o}}{R} \\
& \ln K_{2}=\frac{-\Delta_{r} H^{o}}{R T_{2}}+\frac{\Delta_{r} S^{o}}{R}
\end{aligned}
$$

$$
\ln \left(\frac{K_{1}}{K_{2}}\right)=\frac{\Delta_{r} H^{o}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

Jacobus Henricus van't Hoff (1852-1911), a Dutch chemist

Plotting $\ln \mathbf{K}$ vs $\mathbf{1 / T}$ to derive $\Delta \mathbf{H}^{0}$ and ΔS^{0} of a reaction or transition

$$
\ln K=-\frac{\Delta_{r} H^{o}}{R T}+\frac{\Delta_{r} S^{o}}{R}
$$

The slope is

$$
-\Delta_{r} H^{o} / R
$$

The intercept is

$$
\Delta_{r} S^{o} / R
$$

Van't Hoff Equation with $\log _{10}$

$$
\log _{10} K=-\frac{\Delta_{r} H^{o}}{2.3 R T}+\frac{\Delta_{r} S^{o}}{2.3 R}, \quad 2.3=\ln (10)
$$

Example of van't Hoff Plot

Partial Pressures in Gas mixtures vs Solution Concentrations

Equilibrium between mixtures in gas and liquid:

- Concentration of an ingredient in solution is proportional to its partial pressure in the gas phase
- Coefficients depend on the solvent (e.g. water) and ingredient-solvent interactions

$$
\boldsymbol{C}_{i, \text { in solution }}=K_{i} \boldsymbol{P}_{i, \text { in gas }}
$$

It can be derived from the condition that chemical potential for of molecule \boldsymbol{i} is equal in gas and liquid phases.

Gas-Solution Equilibrium for Each

 Solution Ingredient$$
\mu_{i, l i q}=\mu_{i, v a p} \quad ; \quad \mu_{i, l i q}^{*}=\mu_{i, v a p}^{*}
$$

Conc

- i may be water or drug

$$
\mu_{i, l i q}^{*}+R T \ln \left(\frac{c_{i}}{c_{i}^{*}}\right)=\mu_{i, v a p}^{*}+R T \ln \left(\frac{p_{i}}{p_{i}^{*}}\right)
$$

arcs

$$
R T \ln \left(\frac{c_{i}}{c_{i}^{*}}\right)=R T \ln \left(\frac{p_{i}}{p_{i}^{*}}\right)
$$ solute or solvent

- * - ingredient at standard
concentration or pressure

Raoult's Law: solvent

 vapor pressure for solutions

French physicist FrançoisMarie Raoult
\boldsymbol{i} for solvent (e.g. water) molecules

- Solvent (eg water) pressure vs molar fraction $x_{\text {solute }}$ of non-volatile solute
- Vapor pressure of solvent is decreased as the solute concentration is increased
- $\mathrm{P}_{\text {water }}=0.23$ bar at $20^{\circ} \mathrm{C}$ (100C?)
$\boldsymbol{P}_{\boldsymbol{w}}=\boldsymbol{x}_{\boldsymbol{w}} \boldsymbol{P}_{\boldsymbol{w}}^{*}=\left(1-x_{\text {solute }}\right) P_{w}^{*}$

Pure water Salt water

$P_{w}^{*}-P=\Delta \boldsymbol{P}=\boldsymbol{x}_{\text {solute }} \boldsymbol{P}_{w}^{*}$

- Water pressure will be lower as you add salt
- Salty water will boil at higher temperature

Henry's Law (gas in solvent)

 $x_{i}^{\text {liq }}=p_{i}^{g} / p_{i}^{* g \text { pure }}$- Gas dissolves in liquid proportionally to its pressure. Example: Oxygen in blood

$$
\binom{P_{i, g a s}=x_{i, \text { sol }} \cdot K_{H}^{x}}{\text { Henry's Law }}
$$

William Henry, a British chemist

- Here K is an empirical constant, slope of the tangent to the experimental curve.
- In the gas mixture itself, partial pressures are proportional to molar fractions: $\boldsymbol{P}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{P}_{\mathbf{0}}-$ Dalton's law

Mixtures that obey
Henry's Law for $x_{\text {solute }} \rightarrow 0$ and Raoult's Law for $x_{\text {solvent }} \rightarrow 1$ are called ideal-dilute solutions.

Air Pressure , O_{2} in Blood

- Rearranged Henry's law: $\left[\boldsymbol{C}_{i, a q}\right]=\boldsymbol{P}_{\boldsymbol{i}} / \boldsymbol{K}_{\text {Henry }}$
- oxygen $\left(\mathrm{O}_{2}\right)$: $\mathrm{K}_{\mathrm{H}}=769.2 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol},\left[\mathrm{O}_{2}\right] \sim 270 \mu \mathrm{M}$
- carbon dioxide $\left(\mathrm{CO}_{2}\right)$: $\mathrm{K}_{\mathrm{H}}=29.4 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol},[\mathrm{CO} 2]=13.2 \mu \mathrm{M}$
- hydrogen (H2) : $\mathrm{K}_{\mathrm{H}}=1282.1 \mathrm{~L}$-atm/mol

Atmospheric Pressure vs. Altitude
Total pressure \boldsymbol{P} and partial pressures $\boldsymbol{P}_{\boldsymbol{i}}$ also depends on elevation (depth) and temperature.

Solubility of O_{2} in plasma also depends on hemoglobin (Hb) that binds and carries O_{2}

Review

- The chemical potential of component J:
- Gas
- Liquid mixture

$$
\begin{gathered}
\mu_{i}^{g}=\mu_{i}^{P_{0}}+R T \ln \frac{P_{i}}{P_{0}} \\
\mu_{i}=\mu_{i}^{c_{0}}+R T \ln \frac{c_{i}}{c_{0}}
\end{gathered}
$$

$-\Delta G$ and entropy of mixing.

- The chemical equilibrium
- K via concentrations and reaction stoichiometry
- From K, to $\Delta \mathrm{G}^{\circ}$
- From K at T_{1} and T_{2}, to $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$, Van't Hoff
a_{i} below may also be molar fraction x_{i} or concentration c_{i} depending on the

$$
K=\prod_{i=1}^{\substack{\text { standard state and ideality } \\ n}} a_{i}^{v_{i}}, \quad e . g \cdot K=\frac{[A \bullet B]}{[A][B]}
$$

$$
\ln K=-\frac{\Delta_{r} G^{o}}{R T}
$$

$$
\ln K=-\frac{\Delta_{r} H^{o}}{R T}+\frac{\Delta_{r} S^{o}}{R} \quad \ln \left(\frac{K_{1}}{K_{2}}\right)=-\frac{\Delta H^{o}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

