
G=H-TS     Entropy

CLASSICAL THERMODYNAMICS
study of macroscopic/thermodynamic
properties of systems: U, T, V, P, …

STATISTICAL THERMODYNAMICS
establishing relationships between 
microstates and macrostates

Rudolf Clausius

Ludvig Boltzmann
1844-1906
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A new State Function:

1st law: DU = q – w  
Hear capacity: C=q/DT
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Thermodynamics of Ligand Binding and Efficiency
A look at ligand binding thermodynamics in drug 
discovery. Expert Opin Drug Discov. 2017
Claveria-Gimeno, Vega S, Abian O, Velazquez-Campoy A



Entropy as a 
measure of 
number of 

states
Log (W) function (where W is the 
number of states) makes Entropy 
additive and extensive

Entropic Botzmann by Les Dutton, PhD



Entropy : counting microstates
• All alternative states of a 

system have the same energy U
• A macro-state (eg gas or liquid)  

consists of N microstates
• Microstates are combinaitons

of molecular microstates (nmicro) • Phase B
nmicro=10

Phase A 
nmicro=1 1 molecule

S = kB lnNmicrostates

N forNAmolecules
= nNA

lnax = x lna
Smole = kB lnN = kBNA lnn = R lnn

1 molecule
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ΔSAB
mole = R ln10

1 molecule

1 molecule
1 molecule

1 molecule



Classical Entropy and Units

• Units of DS:   Joule/K (or cal/K )
• Warnings:  The units of Entropy are the same 

as Heat Capacity, however DS and C are totally 
different:   

   
T
qS =D

   
T
qC
D

=

Entropy Change of a Reversible Process = 
Small Heat over Absolute Temperature

Heat Capacity of material = 
Heat over Small Temperature Change



Entropy Change in an Irreversible Process

• For an irreversible transition from state A to state B:
• Irreversible Û spontaneous Û no work required ÛDU = q
Clausius:  “No process is possible whose sole result is the transfer of 

heat from a body of lower temperature to a body of higher 
temperature”

Kelvin:  “No process is possible in which the sole result is the 
absorption of heat from a reservoir and its complete conversion 
into work”
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the Second Law of Thermodynamics
DS ≥ 0 : in an isolated system S is increasing as it is 

reaching its equilibrium maximum value



Entropy Changes in Specific Processes

• Changes in volume or pressure (e.g. in 
isothermal expansion of ideal gas). Larger 
volume, more space microstates, N~V, S ~ lnV

• Changes in temperature (illustrated by isobaric 
heating of ideal gas)     PV=nRT . More 
microstates for energy values ~ T.  N ~ T   S ~ lnT

• Phase changes (at the transition temperature)
• Entropy of mixing  (bigger volume for each 

molecule)



Entropy. Gas. Classical method:  S ( Volume ) at T=const

Classical Derivation (optional).    PV = nRT
• Consider ideal gas isothermally expanding from VA to VB .  DU = 0

because the internal energy for ideal gas only depends on the temperature
• As ΔS does not depend on path, choose a reversible path 
• Entropy change:
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Entropy. Gas.  S(Temperature), P=const

• Consider ideal gas heating from TA to TB at constant pressure or 
any other system where Cp does not change between TA and TB

• As ΔS does not depend on path, choose a reversible path:
dqrev = CP dT

• Entropy change:

• If CP ~ constant
• Note for n moles
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Classical Derivation (optional)

CP =   nCm
P



Kirchhoff rules extended to DS
• Now we can calculate both H and S 

from Cp at T2

• (Kirchhoff)
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calorimeter
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Entropy in Statistical Thermodynamics
• Entropy is a measure of number of 

states
• S = – k S pi ln pi , where:

– pi is the probability of the microstate i
– k  (or kB) is the Boltzmann constant

• If the microstates are equi-probable:

S = k lnW
where W is the number of microstates for the entire 
system (distinguishable ways the system can be put 
together with given U and V),  Wmole = n1

Na

• Smole=Sm =R ln (n1 ) if n is the 
number of microstates for one molecule.

• DSm aèb = Sb-Sa=R ln (nb/na)



Entropy Changes: Examples
• Configurational Entropy of one molecule in a 

transition from one conformation to all 
possible ones.

• Example: the number of states W in one 
molecule, with nb rotatable bonds with 3 equi-
probable states, n is # states in 1 molecule

Sm = R ln (n) 
n = 3nb

Dsfrom 1 to n states = R✕ nb ✕ ln(3) 



Entropy is Additive : SAB = SA + SB

• Entropy of two parts, A and B   
SA = k ln nA ,     SB = k ln nB,

• Entropy of both parts , A + B:
The number of states:  nAB = nA nB
SAB = k ln( nA nB) = k ln nA + k ln nB= SA +SB

Entropy is ADDITIVE, since  ln XY = ln X + ln Y

• For the Avogadro number of molecules with n1
states:  Smole= NA k ln n1 = R ln n1



Standard Entropies of Formation
DSm=S2-S1=R ln(n2/n1)
• The number of 

vibration quantum
microstates depends 
on the atom masses

Solid: 116

ΔS°rxn = Sf°products – Sf°reactants



Entropy Summary: Smolar=R ln n

• S = k ln N   for any number of molecules,  N is the 
total number of combinations of micro-states for all molecules.

• N = nNA for 1 mole (NA is Avogadro number) of 
molecules, n is the number of states per 
MOLECULE

• S for one mole:  Sm = k ln N = k NA ln(n)=R ln n
• S for  m moles is  mSm (entropy is additive)
• DSm 1->2= R ln (n2/n1)



Estimating   ln(1+x) and more
• In many problems you need 

to estimate expressions 
looking like 
ln(300K/280.) » ln(1.07)   or 

1/1.2, etc.
• To evaluate them use a 

simple technique based on 
the Taylor expansion:
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Gibbs Free Energy

G = H - TS
DG = DH – TDS (Free Energy Change in a Transition)

• G defines the direction of transformations and reactions
• Chemical reactions are spontaneous in the direction of 

decreasing G   , i.e. dGT,P £ 0
• In chemical or phase equilibrium G1=G2 or DG=0
• G defines maximal useful (non-expansion) work that can be 

extracted from the system

1839-1903, American theoretical physicist

What function defines the direction of 
processes at constant temperature and 
pressure (biology) ?



Minimize G by bonding and having more states

• Enthalpy (H) push to more bonds is
counteracted by Entropy (S) push for more
states.

• Reducing H by forming more strong bonds
• Entropy (S) is freedom, ln(States), ability to 

have many options, personal Space.  You 
want to increase S (thus reducing –TS). 
Freedom contribution, -TS, to G increases 
with temperature. 

• Temperature is the relative importance of 
freedom and Entropy in total balance

G = H – T S
• Goal: Minimize G by reducing H and 

increasing S.
• G,H,TS measured in the J, kJ, or cal/kcal

-TS
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G=H-TSHappy

Bonded/restricted

Bonded and happy

Gloomy

Free, many states

Entropy acts as a Counterbalance



Review
• Hess rules for H
• Entropy

• Entropy from Cp at T2

• Entropy of gas from (p1,v1) to 
(p2,v2):

• Smole= kB ln (Ntotal) 
=  R  ln (nstates_of_one_molecule)

DS= nR ln(n1/n2)

• State functions (variables)
• 1st Law, work DU = q - w
• Enthalpy
• Calorimetry
• Heat capacity, C≡q / DT
• Cv and Cp

• Molar C, specific heat
• Transitions, standard states
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DST= nR ln(v1/v2)
DST= -nR ln(p1/p2)

Gibbs Free Energy (G)

G=H-TS
G1 = G2 
G→minimum



Example: Entropy and Growing Crystals - I

HCl – hydrogen chloride
• Low entropy – perfect crystals
• Once the 1st molecule is in place, there is only one way to 

put the crystal together (W total number of states):
W = 1

• At T = 0, 
S = k ln W = k ln 1 = 0

Optional example



Example: Entropy and Growing Crystals - II
CO – carbon oxide
• Higher entropy – imperfect (rotationally 

disordered) crystals
• Once the 1st molecule is in place, there 

are two ways to position the 2nd

molecule, for each of these, two ways to 
position the 3rd molecule etc:

Number of states for N molecules W = 2N

• At T = 0,
S = k ln W = k ln 2N = Nk ln 2

• For a mole of CO, 
S = (NA k) ln 2 = R ln 2 

(R – gas constant)

Optional example


