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The thermodynamic parameters (AG®, AH®, AS®) of the drug-receptor binding equilibrium derived from
equilibrium constant measurements at different temperatures and van't HofT plots are reviewed. The analysis
involves 186 independent experiments performed on 136 ligands binding to 10 biological receptors and, for
comparison, to DNA and to two different enzymes. AH® and AS® values correlate according to the regression
equation AH® (kcal mol™!) = -9.5 + 278AS5° (kcal K-! mol™') with a correlation coefficient of 0.981. The
correlating equation is of the form AH® = SAS® and is expected for a case of enthalpy—entropy compensation
with a compensation temperature § = 278 K. The AH-AS correlation is carefully examined in terms of
transmission of the experimental errors and of the representativeness of the experimental sample utilized. The
correlation can be considered a true physical constraint for which, in spite of the relatively wide intervals of
AH® and AS® allowed, the drug-receptor dissociation constant, Kp, can never be smaller than some 10 pM.
The physicochemical origin of the AH-AS compensation is probably related to an intrinsic property of the
hydrogen bond, which is the main force determining the association of the participants (drug, receptor binding
site, water) in the drug-receptor binding equilibrium.



Entropy as a

measure of

number of
states

Log (W) function (where W is the
number of states) makes Entropy
additive and extensive
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Entropy : counting microstates

e All alternative states of a
system have the same energy U

* A macro-state (eg gas or liquid)
consists of N microstates

* Microstates are combinaitons

of molecular microstates (n_;..)
S = kB hl N microstates
_ 2 Va
N forN ymolecules ~— n

Ina” =xlna
S w=kgInN=k,N,Inn=Rlnn

mole



Classical Entropy and Units

i Entropy Change of a Reversible Process =
e Small Heat over Absolute Temperature

e Units of AS: JOUlE/K (or cal/K)

 Warnings: The units of Entropy are the same
as Heat Capacity, however AS and C are totally
different:

( 1 _ q Heat Capacity of material =

AT

Heat over Small Temperature Change



Entropy Change in an Irreversible Process

the Second Law of Thermodynamics
AS >0 : in an isolated system S is increasing as it is

reaching its equilibrium maximum value

B B
. . L d d
* For anirreversible transition from state A to state B: f%l < f% =AS

. . A
* Jrreversible < spontaneous <> no work required < AU = q

Clausius: “No process is possible whose sole result is the transfer of
heat from a body of lower temperature to a body of higher
temperature”

Kelvin: “No process is possible in which the sole result is the

absorption of heat from a reservoir and its complete conversion
into work”



Entropy Changes in Specific Processes

Changes in volume or pressure (e.g. in
isothermal expansion of ideal gas). Larger
volume, more space microstates, N~V, S ~ InV

Changes in temperature (illustrated by isobaric
heating of ideal gas) PV=nRT . More
microstates for energy values ~T. N~ T S~ InT

Phase changes (at the transition temperature)

Entropy of mixing (bigger volume for each
molecule)



Entropy. Gas. Classical method: S ( Volume ) at T=const

T=const
AU=0, w=q # S=nR-InV
* Increase “. “ V
0% & o MMLLY| e | AS =nRn _B)
.VA. ’. .VB. ® “ VA

Classical Derivation (optional). PV =nRT

* Consider ideal gas isothermally expanding from V,to V. AU =0
because the internal energy for ideal gas only depends on the temperature

* As AS does not depend on path, choose a reversible path

* Entropy change: dg 1% 1 Yy B )
AS:JA - =;V{dqm =;VIAPdV =VjA7dV =nRIn(V) }:
é ™
qrev =W nRT ) ln(ﬁ) - AST = nR ' ln(ﬁ) = :n/R' ln &
Va \ Vi P, y




Entropy. Gas. S(Temperature) P=const
¥ =C,-InT

G EU? b o A

Classical Derivation (optional)
* Consider ideal gas heating from T, to T at constant pressure or

any other system where C, does not change between T, and T
* As AS does not depend on path, choose a reversible path:

dqrevchdT
T T
fd ¢ dT
* Entropy change: AS:J 1 :JCP_ note : J——lnx
T T T T
r - N
c IfCp™ tant cdT T
p~ constan Aszijd—szln—B
* Notefornmoles C, = n(C’ s T T,
. - J




Kirchhoff rules extended to AS

* Now we can calculate both Hand S
The same formula is used to

from C, at T, / measure entropy i

T2 T2
AS:jdqr” =ICPdT%Cpln L
Yo bT T

* AH=~C,(T,-T) (Kirchhoff)

For AT << T;

S<T2>~S<Tl>+cp(73; le




Entropy in Statistical Thermodynamics

e Entropy is a measure of number of
states

e S=—k 2 p;Inp;, where:
— p;is the probability of the microstate i
— k (or kg) is the Boltzmann constant

e If the microstates are equi-probable:

A
|
|
LYDWIG
BOLTZMANN

1844 - 1906

where W is the number of microstates for the entire
system (distinguishable ways the system can be put
together with given U and V), W, .. = n,"?

* S, 0=, ?R In (n; ) ifnisthe
number of microstates for one molecule.

* AS,, .5, =S,-S,=R In (n;/n,)




Entropy Changes: Examples

e Configurational Entropy of one molecule in a
transition from one conformation to all
possible ones.

 Example: the number of states W in one
molecule, with n, rotatable bonds with 3 equi-
probable states, n is # states in 1 molecule

S =RIn(n) s
n = 3" “Ig

Asfrom 1 to n states — = R~ nb Xln(3)



Entropy is Additive : S, =S, + S;

* Entropy of two parts, A and B
Sp=kinn, Sg=klinng
* Entropy of both parts, A + B:

The number of states: Ny = Ny Ng
Sis=kin(nyng)=kinn,+klInng=S,+5;

Entropy is ADDITIVE, since InXY=InX+InY

* For the Avogadro number of molecules with n,

states: S .= NpkInn;=RlInn,



Standard Entropies of Formation

Compound

Diatomic Gases

H2
D2
HCI
HBr
HI
N2
02
F2
Clp
Brp
12
CcO
Triatomic Gases
H20
NO2
H2S
CO2

SO

Sm® N K Tmor?

1307

145.0

186.9

198.7

206.6

1916

2051

202.8

2231

2455

260.7

197.7

188.8

2401

205.8

2137

2482

Solid: 116

Compound
Solids
C (diamond)

C (graphite)
Liquids

Hg

Brp

H20

H202

CH30H

CoH50H

CgHp

BCl3

Monatomic Gases
He

Ne
Ar
Kr

Xe

SmP 1 K Tmor

2377

5.74

76.0

162.2

69.9

109.6

126.8

160.7

1728

206.3

126.0

146.2

154.8

164.0

169.6

Energy

* The number of
vibration guantum

microstates depends
on the atom masses

S

3
Internuclear Separation (r)

o _ o _ o
AS rxn — Sf products Sf reactants



Entropy Summary: S, =R Inn

molar

e S=kinN for any number of molecules, N isthe
total number of combinations of micro-states for all molecules.

* N=n"" for 1 mole (N, is Avogadro number) of
molecules, n is the number of states per
MOLECULE

e Sforonemole: S, =kInN=kN,In(n)=RInn

* Sfor m molesis mS,_ (entropy is additive)
* 45, 1.,=RIn (ny/n,)



(*advanced, optional)

Estimating In(1+x) and more

In(1+x) = x
* In many problems you need

to estimate expressions e =1+x
looking like (1+x)" ~1+nx
In(300K/280.) ~ In(1.07) or |
1/1.2, etc. Examples :n=-1,—,2
 To evaluate them use a
simple technique based on 1
the Taylor expansion: m ~1-x

1
l+x)=~1+—x

(1+x)> =14 2x
E.g.In(1.07)= 0.7



US1AH WILLARD GIBBS

Gibbs Free Energy 5 X,

What function defines the direction of
processes at constant temperature and
pressure (biology) ?

G=H-TS

AG — AH — TAS (Free Energy Change in a Transition)

G defines the direction of transformations and reactions

Chemical reactions are spontaneous in the direction of
decreasing G ,i.e. dG;p <0

In chemical or phase equilibrium G,=G, or AG=0

1839-1903, American theoretical physicist

G defines maximal useful (non-expansion) work that can be
extracted from the system



Minimize G by bonding and having more states

Enthalpy (H) push to more bonds is fo | ' "
counteracted by Entropy (S) push for more b P % ﬂ
states. Bonded and happy

Reducing H by forming more strong bonds - "
Entropy (S) is freedom, In(States), ability to

have many options, personal Space. You Free, many states  _TG Bonded/restricted

want to increase S (thus reducing —TS).
Freedom contribution, -TS, to G increases
with temperature.

- +

Entropy acts as a Counterbalance

Temperature is the relative importance of
freedom and Entropy in total balance

Goal: Minimize G by reducing H and
increasing S.

G,H,TS measured in the J, kJ, or cal/kcal




Previous Review

State functions (variables)

1st Law, work AU=qg-w
Enthalpy H=U+PV
Calorimetry

Heat capacity, C=q /AT

oH
C,and G, < (GTJP
Molar C, specific heat c

)
Transitions, standard states o Jy

Gibbs Free Energy (G)
G=H-TS
G, =G,

G—minimum

Review

Hess rules for H

Entropy

75 — e dq
T

rev

B
or ASz_f

Entropy from C,at T, 4

H(Ty) ~ H(R)+Cp(T, =T,
S(1) ~ S(T) +C, h{%
Entropy of gas from (p,,v4) to 1
(P2V2) 4G = uR In(v,/vy)

AS 7= -nR In(p,/p,)
Smolte= Kg IN (Nyota)

=R In (nstates_of_one_molecule)

AS=nR In(n,/n,)



Optional example

Example: Entropy and Growing Crystals - |

HCI — hydrogen chloride
* Low entropy — perfect crystals

* Once the 1t molecule is in place, there is only one way to
put the crystal together (W total number of states):

W=1
e AtT=0,
S=klinW=kln1=0




Optional example

Example: Entropy and Growing Crystals - Il

CO — carbon oxide

Higher entropy — imperfect (rotationally u u “ &

disordered) crystals

Once the 1t molecule is in place, there &U u u

are two ways to position the 2nd , .
OLWVLOL

DOOLY

molecule, for each of these, two ways to
position the 3@ molecule etc:

Number of states for N molecules W = 2V
At T =0,
S=kInW=kln2V=NkIn 2
For a mole of CO,
S=(Nyk)In2=RIn2
(R — gas constant)




