G=H-TS Entropy

CLASSICAL THERMODYNAMICS

 study of macroscopic/thermodynamic properties of systems: $U_{1} T_{1} V_{1} P_{1} \ldots$
$S=k \ln N$

STATISTICAL THERMODYNAMICS

establishing relationships between
microstates and macrostates

Ludvig Boltzmann 1844-1906

A look at ligand binding thermodynamics in drug
discovery. Expert Opin Drug Discov. 2017
Claveria-Gimeno, Vega S, Abian O, Velazquez-Campoy A
J. Phys. Chem. 1994, 98, 1515-1518

Enthalpy-Entropy Compensation in Drug-Receptor Binding

Paola Gilli, Valeria Ferretti, and Gastone Gilli*
Dipartimento di Chimica, Università di Ferrara, 44100 Ferrara, Italy

Pier Andrea Borea
Istituto di Farmacologia, Università di Ferrara, 44100 Ferrara, Italy
Received: August 10, 1993; In Final Form: November 5, 1993*

The thermodynamic parameters ($\Delta G^{\circ}, \Delta H^{\circ}, \Delta S^{\circ}$) of the drug-receptor binding equilibrium derived from equilibrium constant measurements at different temperatures and van't Hoff plots are reviewed. The analysis involves 186 independent experiments performed on 136 ligands binding to 10 biological receptors and, for comparison, to DNA and to two different enzymes. ΔH° and ΔS° values correlate according to the regression equation $\Delta H^{\circ}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)=-9.5+278 \Delta S^{\circ}\left(\mathrm{kcal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$ with a correlation coefficient of 0.981 . The correlating equation is of the form $\Delta H^{\circ}=\beta \Delta S^{\circ}$ and is expected for a case of enthalpy-entropy compensation with a compensation temperature $\beta=278 \mathrm{~K}$. The $\Delta H-\Delta S$ correlation is carefully examined in terms of transmission of the experimental errors and of the representativeness of the experimental sample utilized. The correlation can be considered a true physical constraint for which, in spite of the relatively wide intervals of ΔH° and ΔS° allowed, the drug-receptor dissociation constant, K_{D}, can never be smaller than some 10 pM . The physicochemical origin of the $\Delta H-\Delta S$ compensation is probably related to an intrinsic property of the hydrogen bond, which is the main force determining the association of the participants (drug, receptor binding site, water) in the drug-receptor binding equilibrium.

Entropy as a measure of number of states

Log (W) function (where W is the number of states) makes Entropy additive and extensive

Entropic Botzmann by Les Dutton, PhD

Entropy : counting microstates

- All alternative states of a system have the same energy U
- A macro-state (eg gas or liquid) consists of N microstates
- Microstates are combinaitons of molecular microstates ($\mathrm{n}_{\text {micro }}$)
- Phase B $\mathrm{n}_{\text {micro }}=10$
$\Delta S_{A B}^{\text {mole }}=R \ln 10$
$S_{\text {mole }}=k_{B} \ln N=k_{B} N_{A} \ln n=R \ln n$

Classical Entropy and Units

Entropy Change of a Reversible Process = Small Heat over Absolute Temperature T

- Units of ΔS : Joule/K (or cal/K)
- Warnings: The units of Entropy are the same as Heat Capacity, however $\Delta \mathrm{S}$ and C are totally different:

$$
C=\frac{q}{\Delta T}
$$

Heat Capacity of material =
Heat over Small Temperature Change

Entropy Change in an Irreversible Process

the Second Law of Thermodynamics

$\Delta S \geq 0$: in an isolated system S is increasing as it is

reaching its equilibrium maximum value

- For an irreversible transition from state A to state $B: \int_{A}^{B} \frac{d q}{T}<\int_{A}^{B} \frac{d q_{r e v}}{T}=\Delta S$
- Irreversible \Leftrightarrow spontaneous \Leftrightarrow no work required $\Leftrightarrow \Delta U=q$

Clausius: "No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature"
Kelvin: "No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work"

Entropy Changes in Specific Processes

- Changes in volume or pressure (e.g. in isothermal expansion of ideal gas). Larger volume, more space microstates, $N^{\sim} V, S \sim \ln V$
- Changes in temperature (illustrated by isobaric heating of ideal gas) PV=nRT . More microstates for energy values $\sim T . N \sim T \quad S \sim \ln T$
- Phase changes (at the transition temperature)
- Entropy of mixing (bigger volume for each molecule)

Entropy. Gas. Classical method: S (Volume) at T=const

$$
S=n R \cdot \ln V
$$

$$
\Delta S_{T}=n R \cdot \ln \left(\frac{V_{B}}{V_{A}}\right)
$$

Classical Derivation (optional). $\quad P V=n R T$

- Consider ideal gas isothermally expanding from V_{A} to $V_{B} . \Delta U=0$ because the internal energy for ideal gas only depends on the temperature
- As ΔS does not depend on path, choose a reversible path
- Entropy change:

$$
\begin{aligned}
& \text { Entropy change: } \Delta S=\int_{V_{A}}^{V_{B}} \frac{d q_{r e v}}{T}=\frac{1}{T} \int_{V_{A}}^{V_{R}} d q_{r e v}=\frac{1}{T} \int_{V_{A}}^{V_{R}} P d V=\int_{V_{A}}^{V_{B}} \frac{n R}{V} d V=n R \ln (V)_{V_{A}}^{V_{B}} \\
& q_{r e v}=w=n R T \cdot \ln \left(\frac{V_{B}}{V_{A}}\right) \Rightarrow \Delta S_{T}=n R \cdot \ln \left(\frac{V_{B}}{V_{A}}\right)=-n R \cdot \ln \left(\frac{P_{B}}{P_{A}}\right)
\end{aligned}
$$

Entropy. Gas. S(Temperature), $\mathrm{P}=$ const

$$
S=C_{P} \cdot \ln T
$$

$$
\Delta S_{T}=C_{P} \cdot \ln \left(\frac{T_{B}}{T_{A}}\right)
$$

Classical Derivation (optional)

- Consider ideal gas heating from T_{A} to T_{B} at constant pressure or any other system where C_{p} does not change between T_{A} and T_{B}
- As ΔS does not depend on path, choose a reversible path:

$$
d q_{r e v}=C_{P} d T
$$

- Entropy change:

$$
\Delta S=\int_{T_{A}}^{T_{B}} \frac{d q_{r e v}}{T}=\int_{T_{A}}^{T_{B}} C_{P} \frac{d T}{T} \quad \text { note }: \int \frac{d x}{x}=\ln x
$$

- If $C_{P} \sim$ constant
- Note for n moles $C_{P}=\mathrm{n} C_{P}^{m}$

$$
\Delta S_{P}=C_{P} \int_{T_{A}}^{T_{B}} \frac{d T}{T}=C_{P} \ln \frac{T_{B}}{T_{A}}
$$

Kirchhoff rules extended to ΔS

- Now we can calculate both H and S
from C_{p} at T_{2}
The same formula is used to measure entropy in a calorimeter

$$
\Delta S=\int_{T_{1}}^{T_{2}} \frac{d q_{r e v}}{T}=\int_{T_{1}}^{T_{2}} \frac{C_{P} d T}{T} \approx C_{P} \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

$\Delta H \approx C_{P}\left(T_{2}-T_{1}\right) \quad$ (Kirchhoff)

$$
\begin{array}{ll}
S\left(T_{2}\right) \approx S\left(T_{1}\right)+C_{P} \ln \left(\frac{T_{2}}{T_{1}}\right) \quad \begin{aligned}
& \text { For } \Delta T \ll T_{1} \\
& S\left(T_{2}\right) \approx S\left(T_{1}\right)+C_{P}\left(\frac{T_{2}-T_{1}}{T_{1}}\right) \\
& H\left(T_{2}\right) \approx H\left(T_{1}\right)+C_{P}\left(T_{2}-T_{1}\right)
\end{aligned} \text { }
\end{array}
$$

Entropy in Statistical Thermodynamics

- Entropy is a measure of number of states
- $S=-\boldsymbol{k} \sum p_{i} \ln p_{i}$, where:
$-p_{i}$ is the probability of the microstate i
- k (or k_{B}) is the Boltzmann constant
- If the microstates are equi-probable:

$$
S=k \ln W
$$

where W is the number of microstates for the entire system (distinguishable ways the system can be put together with given U and V), $W_{\text {mole }}=n_{1}{ }^{\mathrm{Na}}$

- $\boldsymbol{S}_{\text {mole }}=\boldsymbol{S}_{\boldsymbol{m}}=\boldsymbol{R} \ln \left(\boldsymbol{n}_{\boldsymbol{l}}\right)$ if n is the number of microstates for one molecule.
- $\Delta \boldsymbol{S}_{\boldsymbol{m} a \rightarrow \mathrm{~b}}=\boldsymbol{S}_{b}-\boldsymbol{S}_{a}=R \ln \left(n_{b} / n_{a}\right)$

Entropy Changes: Examples

- Configurational Entropy of one molecule in a transition from one conformation to all possible ones.
- Example: the number of states \mathbf{W} in one molecule, with n_{b} rotatable bonds with 3 equiprobable states, \boldsymbol{n} is \# states in 1 molecule

$$
\begin{gathered}
S_{m}=R \ln (n) \\
n=3^{n_{b}}
\end{gathered}
$$

$\Delta s_{\text {from } 1 \text { to } n \text { states }}=R \times n_{b} \times \ln (3)$

Entropy is Additive : $\mathrm{S}_{\mathrm{AB}}=\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}$

- Entropy of two parts, A and B

$$
S_{A}=k \ln n_{A}, \quad S_{B}=k \ln n_{B},
$$

- Entropy of both parts , A + B:

The number of states: $\boldsymbol{n}_{\boldsymbol{A B}}=\boldsymbol{n}_{\boldsymbol{A}} \boldsymbol{n}_{\boldsymbol{B}}$
$S_{A B}=k \ln \left(n_{A} n_{B}\right)=k \ln n_{A}+k \ln n_{B}=S_{A}+S_{B}$
Entropy is ADDITIVE, since $\ln \mathbf{X Y}=\ln X+\ln \mathbf{Y}$

- For the Avogadro number of molecules with n_{1} states: $\mathrm{S}_{\text {mole }}=\mathrm{N}_{\mathrm{A}} \mathrm{k} \ln \mathrm{n}_{1}=\mathrm{R} \ln \mathrm{n}_{1}$

Standard Entropies of Formation

Entropy Summary: $S_{\text {molar }}=R \ln n$

- $\boldsymbol{S}=\boldsymbol{k} \ln \boldsymbol{N}$ for any number of molecules, \boldsymbol{N} is the total number of combinations of micro-states for all molecules.
- $\boldsymbol{N}=\boldsymbol{n}^{N_{A}}$ for 1 mole (N_{A} is Avogadro number) of molecules, \boldsymbol{n} is the number of states per MOLECULE
- \boldsymbol{S} for one mole: $\boldsymbol{S}_{\boldsymbol{m}}=k \ln N=k N_{A} \ln (n)=\boldsymbol{R} \ln \boldsymbol{n}$
- \boldsymbol{S} for \boldsymbol{m} moles is $\boldsymbol{m S _ { m }}$ (entropy is additive)
- $\Delta S_{\mathrm{m} 1->2}=R \ln \left(n_{2} / n_{1}\right)$

Estimating $\ln (1+x)$ and more

- In many problems you need to estimate expressions looking like
$\ln (300 K / 280.) \approx \ln (1.07)$ or 1/1.2, etc.
- To evaluate them use a simple technique based on the Taylor expansion:

$$
f(a+x)=f_{a}+x f_{a}^{\prime}+\frac{x^{2}}{2} f_{a}^{\prime \prime}+. .+\frac{x^{n}}{n!} f_{a}^{(n)}
$$

$$
\begin{aligned}
& \ln (1+x) \approx x \\
& e^{x} \approx 1+x \\
& (1+x)^{n} \approx 1+n x \\
& \text { Examples }: n=-1, \frac{1}{2}, 2 \\
& \frac{1}{1+x} \approx 1-x
\end{aligned}
$$

$$
\sqrt{(1+x)} \approx 1+\frac{1}{2} x
$$

$$
(1+x)^{2} \approx 1+2 x
$$

$$
\text { E.g. } \ln (1.07) \approx 0.7
$$

Gibbs Free Energy

What function defines the direction of processes at constant temperature and pressure (biology) ?

$$
G=H-T S
$$

$$
\Delta G=\Delta H-T \Delta S_{\text {(Free Energy Change in a Transition) }}
$$

- \boldsymbol{G} defines the direction of transformations and reactions
- Chemical reactions are spontaneous in the direction of decreasing \boldsymbol{G}, i.e. $d G_{T, P} \leq 0$
- In chemical or phase equilibrium $\boldsymbol{G}_{1}=\mathbf{G}_{2}$ or $\mathbf{\Delta G = 0}$
- \boldsymbol{G} defines maximal useful (non-expansion) work that can be extracted from the system

Minimize G by bonding and having more states

- Enthalpy (H) push to more bonds is counteracted by Entropy (S) push for more states.
- Reducing \mathbf{H} by forming more strong bonds
- Entropy (S) is freedom, $\ln ($ States $)$, ability to have many options, personal Space. You want to increase S (thus reducing -TS). Freedom contribution, -TS, to G increases with temperature.
- Temperature is the relative importance of freedom and Entropy in total balance

$$
G=H-T S
$$

- Goal: Minimize G by reducing H and increasing S .
- G,H,TS measured in the J, kJ, or cal/kcal

Entropy acts as a Counterbalance

Review

Previous Review

- State functions (variables)
- 1st Law, work $\Delta U=q-w$
- Enthalpy $H=U+P V$
- Calorimetry
- Heat capacity, $\mathbf{C} \equiv q / \Delta \mathrm{T}$
- C_{v} and C_{p}
$C_{p} \equiv\left(\frac{\partial H}{\partial T}\right)_{P}$
- Molar C, specific heat
- Transitions, standard states $C_{v} \equiv\left(\frac{\partial U}{\partial T}\right)_{V}$

Gibbs Free Energy (G)
$\boldsymbol{G}=\boldsymbol{H}-\boldsymbol{T S}$
$\boldsymbol{G}_{I}=\boldsymbol{G}_{2}$
$G \rightarrow$ minimum

- Hess rules for H
- Entropy $d S=\frac{d q_{\text {rev }}}{T}$ or $\Delta S=\int_{A}^{B} \frac{d q_{r e v}}{T}$
- Entropy from C_{p} at T_{2}

$$
\begin{aligned}
& H\left(T_{2}\right) \approx H\left(T_{1}\right)+C_{P}\left(T_{2}-T_{1}\right) \\
& S\left(T_{2}\right) \approx S\left(T_{1}\right)+C_{P} \ln \left(\frac{T_{2}}{T_{1}}\right)
\end{aligned}
$$

- Entropy of gas from $\left(\mathrm{p}_{1}, \mathrm{v}_{1}\right)$ to

$$
\begin{array}{ll}
\left(\mathrm{p}_{2}, \mathrm{v}_{2}\right): & \Delta \boldsymbol{S}_{T}=n R \ln \left(\mathrm{v}_{1} / \mathrm{v}_{2}\right) \\
& \Delta \boldsymbol{S}_{\boldsymbol{T}}=-n R \ln \left(\mathrm{p}_{1} / \mathrm{p}_{2}\right)
\end{array}
$$

- $S_{\text {mole }}=k_{B} \ln \left(N_{\text {total }}\right)$

$$
=R \ln \left(n_{\text {states_of_one_molecule }}\right)
$$

$$
\Delta \boldsymbol{S}=n R \ln \left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)
$$

Example: Entropy and Growing Crystals - I

HCl - hydrogen chloride

- Low entropy - perfect crystals
- Once the $1^{\text {st }}$ molecule is in place, there is only one way to put the crystal together (W total number of states):

$$
W=1
$$

- At $T=0$,

$$
\boldsymbol{S}=k \ln W=k \ln 1=\mathbf{0}
$$

Example: Entropy and Growing Crystals - II

CO - carbon oxide

- Higher entropy - imperfect (rotationally disordered) crystals
- Once the $1^{\text {st }}$ molecule is in place, there are two ways to position the $2^{\text {nd }}$ molecule, for each of these, two ways to
 position the $3^{\text {rd }}$ molecule etc:
Number of states for N molecules $W=2^{N}$

- At $T=0$,

$$
S=k \ln W=k \ln 2^{N}=N k \ln 2
$$

- For a mole of CO,

$$
S=\left(N_{A} k\right) \ln 2=R \ln 2
$$

(R - gas constant)

