Heat, Enthalpy of drug Formation, Enthalpy of Reaction, Binding, Cycles, Drug Dissolution

Objectives:

- Learn to look up Enthalpy of Formation
- Learn to evaluate Enthalpy of Reaction, Dissolution
- Understand the pharmacological implications of exothermic or endothermic drug transitions

$\mathbf{H} = \mathbf{U} + \mathbf{PV}$

Nitroglycerin: drug or dynamite?

- used to treat angina and heart failure since 1879 (glycerin + nitric acid + sulfuric acid)
- Mechanism: converts into Nitric Oxide (•NO), a potent vasodilator, wound healing
- NO-synthase activated by garlic, morphine, L-arginine increases NO
- $4 C_3 H_5 (ONO_2)_3 (liq) \rightarrow 12 CO_2 + 10 H_2 O + 6N_2 + O_2 + 4 \cdot 1415 \text{ kJ of heat}$
- Density = 1.6 g/mL (MM 227.09) , 4 moles -> 570 mL; Products: 710 L

Warning: Nitroglycerin patch **explosions** during defibrillation may be due to voltage breakdown involving the metal mesh in some patches.

Ascanio Sobrero First synthesized NG

Alfred Nobel Fellow student of Sobrero

Specific Heat (per mass)

- Enthalpy: H = U+PV
- P=const: $\Delta H=q$
- Calorimetry: $\Delta H = s m \Delta T$ s : specific heat, s_{water} = 4.186 J/(g °C) Or 1 cal/(g °C) in calories *m* : mass of in grams **Caution about the sign** of heat q: exothermic reaction means **NEGATIVE** heat.

∆H between two states with the same element composition at constant pressure

 Δ H shows which state has lower internal energy (corrected by P Δ V) Δ H defines if the heat is produced or absorbed during the transition

Chemical energy of formation of a drug from elements in their simplest stable state, $\Delta_{\rm f} H$

- Enthalpy of formation: H gets lower as covalent bonds are formed
- **Burning** (reaction with O_2) is an overall *increase* of the number of bonds and/or the 'strengths' of bonds. Some bonds are formed, some broken but to total balance is forming *more* bonds or stronger bonds.
- - Liquid: Hg and Br₂
 - Gas: He, Ne, Ar, Kr, Xe, Rn (inert gases) an H₂, O₂, N₂, F₂, Cl₂

Enthalpies of formation

- Imaginary reaction: formation of a substance, in a given state (s/l/g/aq), from its elemental components, in their standard states. ('aq' means aqueous solution)
- The reaction can occur at different T and P conditions
- ΔH_{f}° is the molar enthalpy of formation
- The standard state of a substance, mixture, or solution is an arbitrarily chosen reference point; often its state at STP: P = 1 bar, T = 273 K or ~300K).
- The standard states of elements are:
 - Liquid: Hg and Br₂
 - Gas: He, Ne, Ar, Kr, Xe, Rn (inert gases) an H_2 , O_2 , N_2 , F_2 , Cl_2
 - Most stable solid allotrope: other elements (e.g. graphite for C)
- ΔH_f° for an element in its standard state is 0.
- ΔH_{f}° values for many substances are tabulated.
- E.g. <u>http://webbook.nist.gov/chemistry/</u>
- https://en.wikipedia.org/wiki/Standard_enthalpy_of_formation
- Solid allotrope (allo- other, trope form): eg graphite & diamond

liquid	Hg, Br ₂	0
gas	He, Ne, Ar, Kr, Xe, Rn	0
gas	H ₂ , O ₂ , N ₂ , F ₂ , Cl ₂	0
Solid (graphite)	С	0
Solid (diamond)	С	1.8
aqueous	NH ₃	-80.8
gaseous	NH ₃	-46.1
solid	Na ₂ CO ₃	-1131
aqueous	NaCl	-407
solid	NaCl	-411.12
liquid	NaCl	-385.92
gaseous	NaCl	-181.42
aqueous	NaOH	-469.6
solid	NaOH	-426.7
aqueous	NaNO ₃	-446.2
solid	NaNO ₃	-424.8
gaseous	SO ₂	-297
liquid	H ₂ SO ₄	-814
solid	SiO ₂	-911
gaseous	NO ₂	+33
gaseous	NO	+90
liquid	H ₂ O	-286
gaseous	H ₂ O	-241.8
gaseous	CO ₂	-393.5
	liquid gas Solid (graphite) Solid (diamond) aqueous gaseous solid aqueous solid liquid gaseous aqueous solid gaseous aqueous solid gaseous jolid gaseous solid gaseous solid	liquidHg, Br2gasHe, Ne, Ar, Kr, Xe, RngasH2, O2, N2, F2, Cl2Solid (graphite)CSolid (diamond)CaqueousNH3gaseousNH3solidNa2CO3aqueousNaClsolidNaClgaseousNaClgaseousNaClgaseousNaClgaseousNaClgaseousNaClgaseousNaOHsolidNaOHsolidNaNO3solidNaNO3solidSO2liquidH2SO4solidSiO2gaseousNOgaseousNOliquidH2OgaseousNOgaseousH2OgaseousH2OgaseousH2OgaseousCO2

Some ΔH_f° values at 25⁰C [kJ/mol]

Water

Forming a Chemical Bond Reduces H

Bond breaking Energy (kJ/mol). The bond formation energy is						
negative	negative (reaction is exothermic), opposite sign of the bond-breaking E					
297	H-I	347	C-C	163	N-N	
364	H-Br	611	C=C	418	N=N	
368	H- <mark>S</mark>	837	C:::C	946 (31	15) N:::N	
389	H-N	305	C-N	222	N-O	
414	H-C	615	C=N	590	N=O	
431	H-Cl	891	C:::N	V		
436	H-H	360	C-O	-		
464	H- <mark>O</mark>	736	C=O	E –	High energy bor	nd
565	H-F	339	C-Cl		Low energy bond	l
151	-	142	0-0	L	X1 X2	x
159	F-F	498 (249) O=O (
193	Br-Br					
243	CI-CI	Need positiv	ve energ	y (e.g. a pho	ton) to break a be	ond

Forward and Reverse Processes

 Standard enthalpy changes of forward and reverse processes must differ only in sign

$$\Delta H^0_{A \to B} = -\Delta H^0_{B \to A}$$

Example: vaporization and condensation (T=373K):

$$\Delta H^{0}_{water \rightarrow vapor} = 40.68 kJ / mol$$

$$\Delta H^{0}_{vapor \rightarrow water} = -40.68 kJ / mol$$

Thermodynamic Cycle

- Choose multipliers by stoichiometry and orient transitions
- Go clockwise and $\Sigma \Delta H_{XY} = 0$
- Flip a sign of *△H* if arrow is in the opposite direction.

Example: 4 states and 3 known transitions, and one unknown transition

$$\Delta H^0_{A \to B} + \Delta H^0_{B \to C} - \Delta H^0_{D \to C} - \Delta H^0_{A \to D} = 0$$

Example: drug-binding

$\Delta H_1 - \Delta H_2 - \Delta H_3 + \Delta H_4 = 0$

If one of the terms is unknown, it can be found from the other three

Hess' Law for a reaction

- From heats of formation to the heat of reaction
- Direct consequence of the fact that **H** is a state function
- Watch stoichiometry coefficients (*v_i*). Example:
- $2H_2 + O_2 => 2H_2O$

$$v_{H2} = 2$$
 $v_{O2} = 1$ $v_{H2O} = 2$

$$\Delta H_{reaction}^{0} = \sum v_{p} \Delta H_{f(products)}^{0} - \sum v_{r} \Delta H_{f(react)}^{0}$$

Use: $H(T)=C_p\Delta T$ to calculate ΔH at higher temperature, if the reaction is done at higher T

Thermochemical Characterization of Reactions and Transitions

Initial State \Rightarrow Final State

- $\Delta H = H(\text{final state}) H(\text{initial state})$
- $\Delta H \equiv$ heat of reaction or transition
 - $\Delta H < 0$ means "⇒" is *exothermic* (produces heat)
 - $-\Delta H > 0$ means " \Rightarrow " is *endothermic* (absorbs heat)

Covalent Bond formation is exothermic

 Counting bonds: Example: burning 2 H₂ (2 bonds) + O₂ (1 bond) => 2H₂O (4 bonds)
 Balance: + 1 bond △H is negative
 Number of covalent bonds increases : exothermic

Reaction examples: enthalpy

ΔH		-
	 Burning (covalent bonds formed) Freezing (non covalent) Condensation Acid-base neutralization 	 Melting Evaporation (always)
	Bonds form or get stronger, heat is produced	Bonds break, or get weaker, substance gets colder

Example: drug dissolution (exo- or endo-?)

- $Drug(solid) + H_2O \Leftrightarrow Drug(aq)$
- Molar heat of reaction at infinite dilution: 1 mole of drug dissolved at infinite amount of H2O (drug already present in solution may affect dissolution enthalpy)
- No covalent bonds change during dissolution (except pH-dependent protonation/deprotonation)
- The interaction balance is delicate, includes drug-drug water-water and drug-water bond strengths.
- If the reaction involves strong noncovalent bond breakage, it may be endothermic
- If crystal interactions are weak but drugwater interactions are strong – dissolution is exothermic
- Q: does negative value mean dissolution?

Drug Dissolution: Micro-crystal size affects kinetics/rates but not equilibrium (ie whether dissolves)

Enthalpy change of solution for some selected compounds			
hydrochloric acid	HCI	-74.84	
ammonium nitrate	$NO_{2}NH_{4}$	+25.69	
ammonia	NH_3	-30.50	
potassium hydroxide	КОН	-57.61	
caesium hydroxide	CsOH	-71.55	
sodium chloride	NaCl	+3.87	
potassium chlorate	KCIO ₃	+41.38	
acetic acid	CH ₃ COOH	-1.51	
sodium hydroxide	NaOH	-44.51	
Change in enthalpy ΔH^{0} in kJ/mol in water at 25°C ^[1]			

Molar heat of dissolution at 298 K

Substance	∆H dissolution (kJ/mol)	
HCI (gas)	-74.84	no gas interactions, strong water int
Ammonia (gas)	-30.50	
Acetic Acid (liquid)	-1.51	
NaCl	3.88	
Ammonium Nitrate	25.69	
Potassium Chlorate	41.38	
Lidocaine HCI	43.5	strong crystal int, weaker water int
Procaine HCI	30.5	

Balance of ΔH contributions in dissolution

- 1. Breaking solute attractions for liq or solids (endothermic)
- 2. Breaking water-water attractions (endothermic)
- 3. Forming water-solute interactions (exothermic)

- Ammonium nitrate and ammonium chloride dissolve in water *endothermically* (strong interaction)
- Mixing $(+NH_4)(-NO_3)$ with water separates the ions
- Exchanging strong ionic bonds for weaker polar bonds (less bonds -> positive ΔH -> cold)
- For ammonium nitrate

Δ H dissolution = +25.69 kJ/mol

Heat Pads

Crystallization:
 Sodium-acetate :

weaker bonds in water to stronger ionic bonds

 heat of crystallization of sodium acetate trihydrate is -35.9 to -39.3 kJ/mol

<image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

- Dissolution: magnesium sulfate : weaker bonds to stronger bonds
- anhydrous MgSO₄ is about
 -54.37 kJ/mol
- includes formation of a hydrate Epsomite (very *exothermic*) + its dissolution in water (slightly endothermic)

∆H : *evaporation* is endothermic

- Evaporation: $liq \rightarrow gas$
- $\Delta H = 44 \text{kJ/mol} @ 300 \text{K}$
- $\Delta U = 44$ -RT = 41.5kJ/mol
- 3.7 non-covalent bonds (hydrogen bonds) per molecule in water, zero in gas
- Number of bonds decreases: system gets colder: evaporation is **endothermic**.

Example: protein/ligand binding

- P for *protein* (target), L for *ligand* (or drug D)
- Assume simple 1:1 stoichiometry: P + L ⇔ PL
- Molar heat of reaction: 1 mole of P + 1 mole of L form 1 mole of PL
- The reaction is often (but not always!) exothermic
- Attn: The reaction is (typically) reversible:
 - not all reactants (P & L) are converted to products (PL)
 - heat is proportional to the amount of product that is formed
 - used in determination of binding affinities by ITC

Enthalpy of binding of several anti-HIV drugs to their target protein HIV protease

Generic Name	MW	∆H (kcal/mol)
Nelfinavir	567.8	3.1
Indinavir	613.8	1.8
Saquinavir	670.8	1.2
Tipranavir	602.7	-0.7
Lopinavir	628.8	-3.8
Atazanavir	704.9	-4.2
Ritonavir	720.9	-4.3
Amprenavir	505.6	-6.9
Darunavir	547.7	-12.7

Molar heat of drug binding to blood plasma proteins

Drug	Protein		∆H biı (kcal/	nding /mol)
Propranolol	α 1-acid glycoprote	in	-11	1.1
Warfarin	human serum albun	nin	-2.	44
		Normal Play Albumin Prealbumin α1-Globulin α1 α-F Re Th Tra α2 Globulin Ce Ha Ha Ha α2 β-Globulins C-F He β2 Tra γ-Globulins	sma Range (Transthyretin) ns Acid Glycoprotein (oros Fetoprotein approx. tinol Binding Protein yroxine Binding Globuli anscortin ns (excl.lipoproteins) ruloplasmin optoglobin Type 1-1 optoglobin Type 2-1 optoglobin Type 2-2 Macroglobulin s (excluding lipoprotein Reactive Protein mopexin Microglobulin approx. ansferrin 5 700 - 1,500	(mg/dL) 3,500 - 4,500 10 - 40 300 - 600 mucoid) 55 - 140 0.001 3 - 6 n 1 - 2 3 - 3.5 400 - 900 15 - 60 100 - 220 160 - 300 120 - 260 100 - 280 150 - 1,100 < 1 50 - 100 0.2 200 - 320

Enthalpy change is sometimes positive Why does water evaporate?

A standard enthalpy of vaporization (or "heat of vaporization"):

 $H_2O(1) \rightarrow H_2O(g)$

Δ_{vap} H° = +40.66 kJ/mol at 373 K

• Coming next: Entropy and Gibbs Free Energy