Drug Reactions and Transitions

- Crystallization, Dissolution
- Drug Isomerization to Active conformer

Thalidomide $\mathbf{R} \leftrightarrow$ Thalidomide \mathbf{S}

- Drug Binding to its Target D + T \leftrightarrow DT vs Dissociation

- Chemical Transformations
reactants \leftrightarrow products
- Many other examples

Thermodynamics in Pharmacology
 Drug Discovery and Properties

Most drugs act via binding specifically to a receptor. How do we find a chemical structure that binds to a receptor? What concentration is needed for a therapeutic effect?
$\Delta \mathbf{G}_{\text {binding }}$: the median value for small drugs is $\sim-11 \mathrm{kcal} / \mathrm{mole}$. That corresponds to: $\mathrm{K}_{\text {dissociation }} \sim \mathbf{2 0} \mathrm{nM}$. How is $\Delta \mathrm{G}$ related to K ?
$\Delta \mathbf{G}_{\text {binding }}=\Delta \mathbf{G}_{\text {complex }}-\left(\Delta \mathbf{G}_{\text {ligand }}+\Delta \mathbf{G}_{\text {target }}\right)$
What is \mathbf{G} and $\Delta \mathbf{G}$? How is it related to kinetic and potential energy of molecules? How to measure it?

Reactions and transitions, Equilibria, energies, concentrations,

Thermodynamics. Part1. Enthalpy

- Drugs go through transitions and modifications, both physically and chemically.
- Transitions can reach EQUILIBRIUM in which the total free energy function G has the lowest value.
- G consists of Enthalpic (H) and Entropic terms
- Enthalpy, or heat content, grows with T
- The slope of H vs T curve is called Heat Capacity
- Properties of individual molecules are replaced by mean quantities for a very large number of molecules, called Thermodynamic Variables

Thermodynamics: System and variables

- Which quantities define a system? Concentrations of constituents, Energy functions (internal energy \mathbf{U}, enthalpy \mathbf{H}, free energy G), Temperature, Pressure, Volume, ..
- Extensive quantities are proportional to the amount of substance (e.g., V , number of moles, energy)
- Intensive quantities are independent of the amount of substance (e.g., density ρ, temperature T, pressure P, concentrations)
Intensive quantities are either intrinsically intensive (e.g., pressure), or are the ratio of two extensive quantities (e.g., density = mass/volume).
- Power of theory: Thermodynamics predicts the state of a complex system via only small number of variables of state.
For example, to describe all properties of 1 g of water, only two variables of state are sufficient (e.g., \mathbf{P} and T .

Type of system	Mass flow	Work	Heat
Open	\checkmark	\checkmark	\checkmark
Closed	\boldsymbol{x}	\checkmark	\checkmark
Thermally isolated	\boldsymbol{x}	\checkmark	\boldsymbol{x}
Mechanically isolated	\boldsymbol{x}	\boldsymbol{x}	\checkmark
Isolated	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}

- Equations of State: relationship between variables (or quantities), e.g. PV = nRT

The First Law of Thermodynamics

- Conservation of Energy: "heat in" increases the energy, "work out" decreases the energy for closed systems
- Internal energy energy \boldsymbol{U} consists of the kinetic energies and potential energies (e.g. molecular interactions) of all molecules in the system.

$$
\Delta U=q-w
$$

energy change heat added work done

The change in internal energy (ΔU) of all
molecules in a closed system is equal to the heat added (q) to the system minus the work done by the system (w)

Enthalpy Definition

$H=U+P V \quad \boldsymbol{q}=\Delta \boldsymbol{U}+\boldsymbol{W}$ (1 $1^{\text {st law }}$)
where \boldsymbol{U} is the total internal energy of the system (potential and kinetic);
\boldsymbol{P} is pressure
\boldsymbol{V} is the volume of the system
$\Delta H=\Delta U+\Delta(P V)$

Thermodynamic Processes

- Greek roots of the thermodynamic terms:

$$
\Delta U=q-w
$$

- isos equal
- baros weight
- adiabatos not passable
- Isothermal $T=$ const
- Isobaric $\quad P=$ const $\quad w=P \Delta V$ (calorimetry) $\Delta U+w=q ; \Delta U+P \Delta V=q ; \Delta(\boldsymbol{U}+\boldsymbol{P V})=\boldsymbol{q}$
- Isochoric $V=$ const $\quad w=0$ (bomb calorimetry), $\Delta U=q$
- Adiabatic $q=0 \quad \Delta \mathrm{U}=-w$
- Enthalpy (or heat content) \boldsymbol{H} is defined as $\boldsymbol{U}+\boldsymbol{P V}$, where \boldsymbol{P} is pressure and \mathbf{V} is volume.
- Heat content (H) of a drug specimen measured by a calorimeter helps to find states, transitions and temperature ranges of stability
- It also characterizes critical events like drug binding, amorphous drug compounds

Calorimetry and Heat Capacity

$$
\Delta U=q-w
$$

- We can measure heat (energy) $\boldsymbol{q}=\boldsymbol{\Delta} \boldsymbol{U}+\boldsymbol{w}$
- transferred to the system, or
- produced by the system

reactions

physical changes
and associate it with temperature change of the system $\Delta \mathrm{T}$ in a calorimeter

$$
\text { Heat capacity, } \mathbf{C} \equiv q / \Delta \mathrm{T}
$$

- Thus, the heat capacity of an object is defined as the amount of heat energy required to raise its temperature by $1 \mathrm{~K}\left(\operatorname{or} 1^{\circ} \mathrm{C}\right)$

Caution about the sign of heat q : exothermic reaction implies NEGATIVE heat
value (the system
produced heat).

Heat Capacity at constant volume, C_{V}

$$
\Delta U=q-w
$$

- At $V=$ const, $1^{\text {st }}$ law: $q=\Delta U$
- Bomb Calorimetry (constantvolume calorimetry)
- Heat capacity at constant volume

$$
C_{V} \equiv\left(\frac{\partial U}{\partial T}\right)_{V} \cong \frac{q_{V}}{\Delta T}
$$

- C_{V} values are tabulated.
- A practical relationship:

$$
\Delta U \approx C_{V} \Delta T
$$

Heat Capacity at constant pressure, $\boldsymbol{C}_{\boldsymbol{P}}$

- Most processes in chemistry and biology occur at constant pressure
- Let us design a new function of state that is directly related to heat at constant pressure.
- Notice that at $P=$ const

$$
\begin{aligned}
& w=\int_{a}^{b} P d V=P V_{a}^{b}=P V_{b}-P V_{a} \\
& q_{p}=\Delta U+P \Delta V \quad C_{P}=\frac{\Delta U+P \Delta V}{\Delta T}
\end{aligned}
$$

$$
C_{P} \equiv\left(\frac{\partial(U+P V)}{\partial T}\right)_{P} \cong \frac{q_{P}}{\Delta T}
$$

Understanding Heat Capacity from Atomic Structure Degrees of Freedom of a Molecule in Gas

- Degrees of freedom (DF) are store energy
- Number of DF increases with T (bonds get excited)
- Theory: $C_{v}=1 / 2 \mathrm{R} \times$ number_of_DF; $C_{p}=C_{v}+R$

- In a drug molecule C_{v} is $\mathrm{R} \times \mathrm{n}$ _vibrational_DF
- Monoatomic gas: 3 DF (translational), $C_{v}=1.5 R$
- Diatomic gas below vib. temp.: 5 DF (3 trans +2 rot)
- Real values $\left(25^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$:

Rotational Motion
0.
$\xlongequal{ } \mathrm{m}$

Monatomic gas	$\mathrm{C}_{\mathrm{V}, \mathrm{m}}$ $\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$	$\mathrm{C}_{\mathrm{V}, \mathrm{m}} / \mathrm{R}$
He	12.5	1.5
Ne	12.5	1.5
Ar	12.5	1.5
Kr	12.5	1.5
Xe	12.5	1.5

Diatomic gas	$\mathrm{C}_{\mathrm{V}, \mathrm{m}}$ $\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$	$\mathrm{C}_{\mathrm{V}, \mathrm{m}} / \mathrm{R}$
H_{2}	20.18	2.427
CO	20.2	2.43
$\mathrm{~N}_{2}$	19.9	2.39
Cl_{2}	24.1	3.06
Br_{2} (vapor)	28.2	3.39

Enthalpy or Heat Content

- At $\mathrm{P}=$ const
- Calorimetry at constant pressure directly measures enthalpy increments, ΔH and C_{P} is $\Delta H_{l d e g}$
- to obtain $H\left(T_{2}\right), C_{P}$ can be integrated over T (Kirchhoff)
- \boldsymbol{H} is a state function since U, P, and V are state functions

$$
\begin{aligned}
& H=U+P V \\
& q=\Delta U+P \Delta V \\
&=\Delta(U+P V) \equiv \Delta H \\
& C_{p} \equiv\left(\frac{\partial H}{\partial T}\right)_{P} \cong \frac{q}{\Delta T}
\end{aligned}
$$

Heats of Formation of a Molecule

- Standard enthalpy of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements ($\mathrm{P}=1$ bar, T usually $25^{\circ} \mathrm{C}$ r 298.15 K)
- The $\Delta_{f} \mathrm{H}^{0}$ values for most compounds are known. For example: NIST Chemistry WebBook
- Examples:
/(kJ/mol)

Ethanol	Liquid	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	-277.0
Ethanol	Gas	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	-235.3
Glucose	Solid	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	-1271
Isopropanol	Gas	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	-318.1

Enthalpy vs T: Kirchhoff's Law

Can we start from $\Delta \mathrm{H}$ at T_{1} and calculate $\Delta \mathrm{H}$ at another temperature T_{2} ?

$$
\begin{aligned}
& \text { By definition: } \quad C_{P} \equiv\left(\frac{\partial H}{\partial T}\right)_{P} \\
& H\left(T_{2}\right)=H\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} C_{P} d T
\end{aligned}
$$

$$
H\left(T_{2}\right) \approx H\left(T_{1}\right)+C_{P} \Delta T
$$

The heat capacity itself depends on temperature, but near 270-370K in most biological reaction or transition cases we can assume $\mathrm{C}_{\mathrm{p}}=$ const

Kirschhoff's Law: Example

- Enthalpy of formation of aspirin molecule is $736 \mathrm{~kJ} / \mathrm{mol}$ at 298 K and its heat capacity is $225 \mathrm{~J} /(\mathrm{mol}$ $\mathrm{K})$. Find $\Delta \mathrm{H}$ and H at 36.6 C
- Solution:

$$
H\left(T_{2}\right) \approx H\left(T_{1}\right)+C_{P} \Delta T
$$

$736+0.225(36.6-25.0) \sim 739 \mathrm{~kJ} / \mathrm{mol}$

Enthalpy and Internal Energy

- For liquids and solids

$\Delta H \approx \Delta U$

 because the thermal expansion (volume change) is small.- Even if gas is produced in a reaction, the extra 'work' is only:

$$
H-U=P V=\boldsymbol{R} \boldsymbol{T}=2.5 \mathrm{~kJ} / \mathrm{mol}=0.6 \mathrm{kcal} / \mathrm{mol}
$$

that is much smaller than a typical process or transition in liquids or solids (e.g. burning or dissolution, or partition)

- Enthalpy characterizes the internal energy changes (corrected by the pressure times volume change) in any of the drugrelated transitions

Drug-Target Enthalpy of Binding

- An enthalpy difference between drug bound to the pocket and drug and pocket in solution ($\Delta \mathrm{H}$ shown in green)
- Negative ΔH is better (specificity)

Summary

	Constant Volume	Constant Pressure
Defines	Heat at constant volume	Heat at constant pressure
Energy	Internal Energy, U	Enthalpy, H=U+PV
Contributions	Total potential and kinetic energy	Total energy shifted by PV
Heat Capacity (slope of H vs T)	$C_{v}=\frac{\partial U}{\partial T}$	$C_{p}=C_{v}+P \frac{\partial V}{\partial T}$
Ideal Gas	$C_{v}=6_{\text {or3or } 5} R / 2+R n_{\text {vibr }}$	$C_{p}=C_{v}+R$
Energy Increments	$\Delta U \approx C_{V} \Delta T$	$\Delta H \approx C_{P} \Delta T$
Ground State	Only ΔU with respect to a described ground state (U_{0}) makes sense. C_{V} does not depend on U_{0}	Same for ΔH and C_{P}

