Physical Pharmacology

Chem.physics, math, molecular structure to understand the following:

Drug and Drug-action-related Matter

• Drug substances , bio-molecules, phases, solutions, membranes, and body compartments

Equilibria and Kinetics of Processes Associated with Drugs

 Crystallization, dissolution, diffusion, osmosis, effusion, permeation, state transitions, chemical and conformational transitions, dynamics, molecular binding and dissociation, elimination/accumulation

Disciplines

- Thermodynamics
- Kinetics
- Molecular Structure

The Skaggs School of Pharmacy and Pharmaceutical Sciences Ruben Abagyan, ©2023 Paul Jackson Website: <u>http://ruben.ucsd.edu</u>

Learning Objectives

- Energy, Work, Pressure, Temperature, SI units, Gas Constant
- Tell from a drug structure *how many* molecules are in X g of substance, or in Y liters of gas
- Calculate a *kg-mass* of an individual drug molecule
- From molecular weight of a drug calculate at what *speed* a drug molecule is moving at any *T*
- Memorize the Avogadro number and the Gas constant
- Memorize the formula for kinetic energy and energy per degree of freedom of a mole of molecules
- Figure out the *units* of the gas constant
- Tomorrow: Gas Law, Barometric formula

Classifying and Naming Drugs

- **Therapeutic types** (physiological change), e.g.
 - Antihypertensive; Anticoagulants; ..
 - Antipsychotics; Hallucinogens; ...
- Pharmacological types (specific molecular mechanism of action), e.g.
 - Beta-adrenergic blockers; Calcium-channel blockers,..
- Drug molecule type, size and properties
- Names: chemical (e.g. (RS)-2-(4-(2-methylpropyl)phenyl)propanoic acid)
 - generic (e.g. lbuprofen)
 - brand name (many), e.g. Advil, Motrin, .. Differences include:
 - Inactive ingredients; bioavailability; prices, ownership rights, etc.
- Drug addiction/abuse potential, Controlled subst., Schedules:
 - I (Heroin, LSD, marijuana, Ecstasy, ..)
 I (<15mg Hydrocodone, Fentanyl, Adderall, Ritalin)
 - III (<90mg of codeine, ketamine, testosterone, anabolic steroids)
 - IV (Xanax, Soma, Darvon, Darvocet, Valium, Ativan, Ambien, Tramadol,..)
 - V (limited quantities of narcotics, cough preparations, etc.)

How big are drugs ? Physical Dimensions

SI unit for size: a meter Ångströms and nanometers:

- 1Å = 10⁻¹⁰ m and 1nm = 10⁻⁹ m = 10 A
- Interactomic distance C-H ~ 1A, C-C ~1.5A
- Small Drugs: from **5Å to 25Å** (PROTACs are larger)
- Drugs from natural products : up to 10Å 35Å
- Diameter of DNA : 20Å
- Protein Drugs, antibodies, drug targets: **50Å to 100Å**
- Biological Membrane 60Å with proteins up to 100Å
- HIV virus ~ **1000Å** = 100nM (0.1 μm)

Microns, $\mu m = 10^{-6}m$:

- Bacteria 1-10 µm visible in microscope
- Red Blood Cell \equiv nucleus of typical eukaryotic cell: 6-9 μ m

1814-1874, measured wavelengths of light in Aurora Borealis spectra

Morphine ~ 5A, Antibody Fab ~ 100A

Poliovisrus (x100)

2-3 x 10¹³ erythrocytes in human body
5-6K in 1mm³ (4–11K white blood cells, 150–400K platelets)
Each with 270 million hemoglobin molecules

7.5 to 8.7 μ m in diameter and 4 1.7 to 2.2 μ m in thickness

Sizes of drugs by MW: the extremes

- The smallest drug is noble gas Xenon (Xe): just one atom, but relatively heavy (131Da, or 131g/mol). It is used as an anesthetic. Lithium is even smaller active ingredient.
- Nitrous Oxide, N₂O (44 Da) is • colorless gas, used for euphoria, sedation, pain relief. Inhaled.
- The largest single molecule drugs • are proteins (~150 kDa for lgG). Assemblies may include viral (like) or nano particles, . Human recombinant anti-hemophilic factor (AHF) or Factor VIII, 2332 residues, glycosylated, produced by insect cells

Molecular weights of approved drugs

Biologics (biopolymers) move up but are still a minority

Worldwide Drug Sales: Biologics vs. Small molecule

EUAed Covid19 antibodies: Tixagevimab + Cilgavimab (EVUSHELD[™]), EUA Previously EUAed: casirivimab plus imdevimab, sotrovimab, and bebtelovimab not active against Omicron subvariants

Large Drugs: Spike Antibodies Casirivimab + Imdevimab

Large and New: Antibody-Drug conjugates and Vaccines

• Antibody-drug-conjugate (ADC)

Dec 2019: Enhertu : HER2-directed-ADC vs metastatic

- Sars-CoV2 vaccines
 - Pfizer (mRNA)
 - Moderna (mRNA)
 - CovonaVac (from Sinovac)

Wisconsin pharmacist, 46, ruined hundreds of doses of Moderna's COVID-19 vaccine 'because he thought they were unsafe'

Steven Brandenburg, 46, was arrested in Wisconsin last week following an investigation into the 57 spoiled vials of the Moderna COVID-19 vaccine

🔍 🔍 227 comments 🛛 🔼 1 video

Ref: F.Krammer, Nature, 2020, SARS-CoV-2 vaccines in development

Moderna and Pfizer Rna Vaccines in LipidNanoParticle

UTR—untranslated region. **b** Schematic of a lipidnanoparticle (LNP) used for delivery of mRNA vaccines. PEG—polyethyleneglycol

Credit: Heinz, F.X., Stiasny, K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. *npj Vaccines* **6**, 104 (2021). https://doi.org/10.1038/s41541-021-00369-6

Drug Giants: Luxturna: Viral carrier + Gene

First FDA approved gene therapy:

Luxturna (Spark Therapeutics), a.k.a. voretigene neparvovec-rzyl

Disease class:

Inherited retinal dystrophies (IRDs) mutations in one of 220 genes one of frequent offenders: RPE65
Drug: Adeno Associated Virus 2 vector with RPE65 gene (AAV2-RPE65)
Approval: 2017, 27 out of 29 gained vision
Price tag: \$850,000 per one treatment

AAV2 virus: icosahedral (12v, 20 faces)
60 proteins: VP1,VP2, VP3,
Capsid MW: 3.9 Mdaltons (>300K C)
Subretinal injection

Also:

Kymriah/(tisagenlecleucel) 2017, CAR-T for leukemia: Vaccines, Cell therapies, Crispr/CAS9 for gene editing, Fecal Transplants, parasitic worms in helminthic therapies

Large and Complex Pharmaceuticals: Cholera Vaccine (Vaxchora, FDA appr. 2016)

- Single-dose oral cholera vaccine
- Targets predominant Vibrio cholerae serogroup O1
- Makes an incomplete, nontoxic "toxin".
- V. Cholera : ~4000 genes, DNA 4M base pairs
- Excipients in other vaccines (from CDC site)
 - flu/Afluria vaccine: beta-propiolactone, thimerosal (multi-dose vials), monobasic sodium phosphate, dibasic sodium phosphate, monobasic potassium phosphate, potassium chloride, calcium chloride, sodium taurodeoxycholate, neomycin sulfate, polymyxin B, egg protein, sucrose
 - MMRV (Measles, Mumps, Rubella, and Varicella) Vaccine: sucrose, hydrolyzed gelatin, sorbitol, monosodium Lglutamate, sodium phosphate dibasic, human albumin, sodium bicarbonate, potassium phosphate monobasic, potassium chloride, potassium phosphate dibasic, neomycin, bovine calf serum, chick embryo cell culture, WI-38 human diploid lung fibroblasts, MRC-5 cells

How many molecules in 1 mole?

• Avogadro number N_A (rule of 6) =2x3

6.022 x 10²³

n_{moles} [mol] = Mass [g]/MolWeight [g/mol]

What contains N_A molecules?

- 1 mole of anything (tautology)
- 12g of carbon
- (Molecular Weight in atomic units) grams of any substance
- ~22.4 liters of any gas at 273.15K and 1atm

One mole of substance ≡ Avogadro number of substance molecules.

Amedeo Avogadro (1776-1856), Torino, Italy. Count of Quaregna and Cerreto

In 1811, hypothesized that equal volumes of gases contained equal number of molecules. N_A is a.k.a. Loschmidt's number. Josef Loschmidt and Jean Baptiste Jean Perrin gave increasingly accurate estimates of N_A

Energy : Main Entity in Physics and Chemistry

- Ability of therapeutics to affect bio molecules is defined and guided by energy balance.
- Energy = capacity to do work
- The kinetic energy, E_k of a body is the energy the body of mass m possesses as a result of its motion at speed v is.

$$E_{K} = \frac{1}{2}mv^{2}$$

- The potential energy, E_p, is a result of its position, composition or condition. Drugs: electrostatic energy, other interaction types,
- Only energy *difference* makes physical sense. For that reason the position at which the potential energy is *zero* is arbitrary (e.g. infinite separation of two charges).

Conservation of Energy

Kinetic Energy + Potential Energy Movement (K) + Position (P)

 $\boldsymbol{E}_{total} = \boldsymbol{E}_{K} + \boldsymbol{E}_{P}$

- The total energy is conserved
- The total energy can be changed Work ≡ Force • Distance
- What happens when a cannon ball is dropped ?
- Temperature is the average energy of random molecular movements per degree of freedom

Gottfried Wilhelm Leibniz 1646-1716, Germany, *vis viva*, living force, conservation of energy

Seeking a minimum of energy

 Every mechanical system with dissipation seeks to achieve a minimum of potential energy within constraints

Energy Units

- The SI units: kilogram, meter, second
- The SI unit for energy is **Joule**.

 $J = kg m^2 s^{-2} (E_{\kappa} = \frac{1}{2}mv^2).$

• **Calories** are also used as a measure of energy. One calorie is the energy needed to increase the temperature of 1 gram of water by 1° C.

1 cal ≈ 4.184 J

 $1 \text{ kcal} \approx 4.184 \text{ kJ}$

(beware of the food Calories!)

• Electron-volts (eV):

1 eV = 1.602176565 × 10⁻¹⁹ Joules

James Prescott Joule 1818-1889 English physicist and brewer

	PER 100	g SERVIN	G
TYPICAL VALUES	(1/10 OF	g SERVIN	Ø
Energy Value	1480 k		1
(Calories	350 k		
Protein	98		
Carbohydrate	76 g		GH
(of which Sugars	0.4 g	1.000	W
Fat	Ig		W
(of which Saturates	0.3 g		W
Fibre	18		W
Sodium	Trace g	LC	W
GUIE DAILY /	MOL		
Each 100g serving I gram of I Use the following to	Fat and no	Salt,	
	Women	Men	
Calories	2000	2500	
Fat	70g	95g	
Salt	5g	78	

Temperature : Energy **Equipartition** in thermal equilibrium

- Absolute temperature is a measure of energy per degree of freedom
- Every excited *degree of freedom* of one molecule in a mixture carries energy is proportional to the Absolute temperature (Kelvin, K)

$$e_{DF} = \frac{1}{2} k_{B}T$$

• For $N_A = 6 \cdot 10^{23}$ molecules,

$$E_{mole_of_DF} = \frac{1}{2} RT$$

• R is the universal gas constant

William Thomson, Lord Kelvin 1824-1907 UK In 1821 wrote "On an Absolute Thermometric Scale". Coined the term "thermodynamics"

Counting Degrees of Freedom

- For Molecules in Gas:
 - External DF: **6**=3+3
 - 3 one atom, 5 for linear
 - Internal: from 0 to 3N_{at}-6
- Vibrations: One vibration = Two DFs
 - Bond length
 - Bond angle
 - Torsion angle
- Vibrational DF may not be excited at room temperature
- More DFs are excited as temperature increases to reach a limit of 3N potential and 3N kinetic degrees of freedom in a crystal

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases

Gas Constant and Kinetic Energy of a Molecule

- R = 8.314 J K⁻¹ mol⁻¹
- Mnenonic device: $8.\pi$

- R = 1.9872 ~ 2 cal K⁻¹ mol⁻¹
- For 3 translational degrees of freedom of movement of one atom in a gas:

 $E_{\text{one atom in gas}}$ [J] = 3/2 k_{B} T = 2. 10⁻²³ [J/K] T [K]

 $E_{one mole} [J] = 3/2 R T = (1.5*8.314) [J/K] T [K]^{-13T}$

Temperature units, k_B and R

- Kelvin (K): 273.15 + °C
- Celsius: °C = K 273.15

(freezing and boiling temperatures of water are 0. and 100., body temperature 36.6°C)

• Fahrenheit : ${}^{\circ}F = {}^{\circ}C \cdot 1.8 + 32$.

(human body temperature is 98.6, fever 100°F)

- We will work only in °C and °K
- $k_B = 1.38 \ 10^{-23} \ J/K$
- $R = k_B N_{Avogadro}$
- R = 8.314 J/(K mol)

Temperature defines internal energy of molecules

The mean energy of one mole of vibrations is **R** T_{Kelvin}

RT at 300K

0.6 kcal/mol

2.5 kJ/mol

½ RT – thermal energy (kinetic, potential) per mole of one degree of freedom
RT – in drug binding (or rate) constants all energies are divided by RT
3 (½ RT) – thermal energy of translational movement of a molecule

Energy Scale

All numbers are per mole=N_A of particles "One" means "One mole of"

Energy in Joules or calories per mole of events

- 2.5 kJ 0.6 kcal one vibration at 300K
- 20-30 kJ 5-10 kcal Protein unfolding
- 40-60 kJ 10-15 kcal nanomolar drug binding
- 160-320 40-80 kcal visible light photons
- 300-700kJ 70-150kcal breaking a chemical bond
- 510 M kJ 120 M kcal alpha-particle. Polonium-210 has a half-life of 138 days and a decay alpha particle energy of 5.3 MeV.
- Reminder: 1 kcal : 1 kg of water by 1°, 1 bagel = 150 kc
- Energy of 1 particle is E/N_A

Mr. Litvinenko dying from Polonium 210 poisoning

SI and PChem Units

Unit		SI		Pharm	nacology	Comment	
Length		m, Meter		Å, nm, μm, cm			
Temperature		K, Degree Kelvin		Celsius, K		Do not use F	
Time		s, Second		S			
Mass		kg, kilogram		g = 10 ⁻³ kg, Da (Dalton), mg,µg			
Energy		J, Joule		kJ, ko	al, Cal (?)	Do not use Cal	
Substance		mole		mole		6.022 10 ²³	
Volume		m ³		L = 10 ⁻³ m ³ , mL,			
	Volu	me	Linear Siz	е	Mass of water		
	1 m ³	(SI)	1 m		1 tonne (metri ton): 1000 kg	с	
	1 L		10 cm		1 kg		
	1 mL		1 cm		1 g		
	1 μL		1 mm		1 mg	23	

Review

- SI units for length: meter
- Smaller units: Å, nm, μm
- Sizes of drugs, proteins, membrane, cells
- Mole, Avogadro (6): N_A ~ 6 10²³
- Kinetic energy = ½ mv²
- Conservation of energy
- Equipartition & absolute T
- 1 mole (ie N_A) Of degrees of freedom carries ½ RT, (1 has ½kT)
- Temperature: $\frac{1}{2}$ mv^{2 =} 3/2 RT

- Celsius (**273.15**) and Fahrenheit
- Energy units: J, cal, kcal, Cal, eV
- Gas constant (8.π) 8.314
 JK⁻¹mol⁻¹
- Boltzmann constant (R/N_A)
- RT at room temperature
 0.6kcal/mol & 2.5 kJ/mol
- Energies of drug binding, photon, unfolding
- 1 calorie = 4.184 Joules