Physical Pharmacology

Chem.physics, math, molecular structure to understand the following:

Drug and Drug-action-related Matter

- Drug substances, bio-molecules, phases, solutions, membranes, and body compartments

Equilibria and Kinetics of Processes Associated with

 Drugs- Crystallization, dissolution, diffusion, osmosis, effusion, permeation, state transitions, chemical and conformational transitions, dynamics, molecular binding and dissociation, elimination/accumulation

Disciplines

- Thermodynamics
- Kinetics
- Molecular Structure

The Skaggs School of Pharmacy and Pharmaceutical Sciences Ruben Abagyan, ©2023

Paul Jackson
Website: http://ruben.ucsd.edu

1

Learning Objectives

- Energy, Work, Pressure, Temperature, SI units, Gas Constant
- Tell from a drug structure how many molecules are in X g of substance, or in Y liters of gas
- Calculate a kg-mass of an individual drug molecule
- From molecular weight of a drug calculate at what speed a drug molecule is moving at any T
- Memorize the Avogadro number and the Gas constant
- Memorize the formula for kinetic energy and energy per degree of freedom of a mole of molecules
- Figure out the units of the gas constant
- Tomorrow: Gas Law, Barometric formula

Classifying and Naming Drugs

- Therapeutic types (physiological change), e.g.
- Antihypertensive; Anticoagulants; ..
- Antipsychotics; Hallucinogens; ..
- Pharmacological types (specific molecular mechanism of action), e.g.
- Beta-adrenergic blockers; Calcium-channel blockers,..
- Drug molecule type, size and properties
- Names: chemical (e.g. (RS)-2-(4-(2-methylpropyl)phenyl)propanoic acid)
- generic (e.g. Ibuprofen)
- brand name (many), e.g. Advil, Motrin, .. Differences include:
- Inactive ingredients; bioavailability; prices, ownership rights, etc.
- Drug addiction/abuse potential, Controlled subst., Schedules:
- I (Heroin, LSD, marijuana, Ecstasy, ..) ||| (<15mg Hydrocodone, Fentanyl, Adderall, Ritalin)
- III (<90mg of codeine, ketamine, testosterone, anabolic steroids)
- IV (Xanax, Soma, Darvon, Darvocet, Valium, Ativan, Ambien, Tramadol,..)
- V (limited quantities of narcotics, cough preparations, etc.)

How big are drugs ? Physical Dimensions

SI unit for size: a meter
Ångströms and nanometers:

- $1 \AA=10^{-10} \mathrm{~m}$ and $1 \mathrm{~nm}=10^{-9} \mathrm{~m}=10 \mathrm{~A}$
- Interactomic distance C-H ~ 1A, C-C $\sim 1.5 \mathrm{~A}$
- Small Drugs: from 5Å to 25Å (PROTACs are larger)
- Drugs from natural products : up to $10 \AA ̊-35 \AA ̊$
- Diameter of DNA : 20Å
- Protein Drugs, antibodies, drug targets: $50 \AA$ to $100 \AA ̊$
- Biological Membrane 60Å with proteins up to $100 \AA 8$
- HIV virus $\sim 1000 \AA$ = $100 \mathrm{nM}(0.1 \mu \mathrm{~m})$

Microns, $\boldsymbol{\mu m}=10^{-6} \mathrm{~m}$:

- Bacteria 1-10 $\mu \mathrm{m}$ visible in microscope
- Red Blood Cell \equiv nucleus of typical eukaryotic cell: 6-9 $\mu \mathrm{m}$

Eukaryotes

Prokaryotes

Viruses
Proteins

Morphine ~ 5A, Antibody Fab ~ 100A

Sizes of drugs by MW: the extremes

- The smallest drug is noble gas Xenon (Xe): just one atom, but relatively heavy (131Da, or $131 \mathrm{~g} / \mathrm{mol}$). It is used as an anesthetic. Lithium is even smaller active ingredient.
- Nitrous Oxide, $\mathbf{N}_{\mathbf{2}} \mathbf{O}$ (44 Da) is colorless gas, used for euphoria, sedation, pain relief. Inhaled.
- The largest single molecule drugs are proteins ($\sim 150 \mathrm{kDa}$ for IgG). Assemblies may include viral (like) or nano particles, . Human recombinant anti-hemophilic factor (AHF) or Factor VIII, 2332 residues, glycosylated, produced by insect cells

Molecular weights of approved drugs

Biologics (biopolymers) move up but are still a minority

Worldwide Drug Sales: Biologics vs. Small molecule

Administration: Parenteral (IM, IV, SQ,..)
Cost: high

Credits: Anthony O'Donohue, 263A class
EvaluatePharma World Review 2019

EUAed Covid19 antibodies: Tixagevimab + Cilgavimab (EVUSHELD ${ }^{\text {TM }}$), EUA
Previously EUAed: casirivimab plus imdevimab, sotrovimab, and bebtelovimab not active against Omicron subvariants

Large Drugs: Spike Antibodies Casirivimab + Imdevimab

Large and New: Antibody-Drug conjugates and Vaccines

- Antibody-drug-conjugate (ADC)

Dec 2019: Enhertu : HER2-directed-ADC vs metastatic breast cancer Monoclonal Antibody Trastuzumab

- Sars-CoV2 vaccines
- Pfizer (mRNA)
- Moderna (mRNA)
- CovonaVac (from Sinovac)

Wisconsin pharmacist, 46, ruined hundreds of doses of Moderna's COVID19 vaccine 'because he thought they were unsafe'

Moderna and Pfizer Rna Vaccines in LipidNanoParticle

Composition: LNP of several lipids, PEG, RNA

Size: sub-micron, $<1 \mu \mathrm{~m}$

UTR—untranslated region. b Schematic of a lipidnanoparticle (LNP) used for delivery of mRNA vaccines. PEG—polyethyleneglycol

Credit: Heinz, F.X., Stiasny, K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. npj Vaccines 6, 104 (2021). https://doi.org/10.1038/s41541-021-00369-6

Drug Giants: Luxturna: Viral carrier + Gene

First FDA approved gene therapy:
Luxturna (Spark Therapeutics), a.k.a. voretigene neparvovec-rzyl

Disease class:
Inherited retinal dystrophies (IRDs) mutations in one of 220 genes one of frequent offenders: RPE65
Drug: Adeno Associated Virus 2 vector with RPE65 gene (AAV2-RPE65)
Approval: 2017, 27 out of 29 gained vision Price tag: $\$ 850,000$ per one treatment

AAV2 virus: icosahedral (12v, 20 faces) 60 proteins: VP1,VP2, VP3, Capsid MW: 3.9 Mdaltons (>300K C) Subretinal injection

Also:
Kymriah/(tisagenlecleucel) 2017, CAR-T for leukemia:
Vaccines, Cell therapies, Crispr/CAS9 for gene editing, Fecal Transplants, parasitic worms in helminthic therapies

Large and Complex Pharmaceuticals: Cholera Vaccine (Vaxchora, fDA appr. 2016)

- Single-dose oral cholera vaccine
- Targets predominant Vibrio cholerae serogroup O1
- Makes an incomplete, nontoxic "toxin".
- V. Cholera : ~4000 genes, DNA 4M base pairs
- Excipients in other vaccines (from CDC site)

- flu/Afluria vaccine: beta-propiolactone, thimerosal (multi-dose vials), monobasic sodium phosphate, dibasic sodium phosphate, monobasic potassium phosphate, potassium chloride, calcium chloride, sodium taurodeoxycholate, neomycin sulfate, polymyxin
 B, egg protein, sucrose
- MMRV (Measles, Mumps, Rubella, and Varicella) Vaccine: sucrose, hydrolyzed gelatin, sorbitol, monosodium Lglutamate, sodium phosphate dibasic, human albumin, sodium bicarbonate, potassium phosphate monobasic, potassium chloride, potassium phosphate dibasic, neomycin, bovine calf serum, chick embryo cell culture, WI-38 human diploid lung fibroblasts, MRC-5 cells

How many molecules in 1 mole?

- Avogadro number N_{A} (rule of 6) $=2 \times 3$

6.022×10^{23}

$\boldsymbol{n}_{\text {moles }}[\mathrm{mol}]=$ Mass $[\mathrm{g}] /$ MolWeight $[\mathrm{g} / \mathrm{mol}]$
What contains N_{A} molecules?

- 1 mole of anything (tautology)

- 12g of carbon
- (Molecular Weight in atomic units) grams of any substance
- ~22.4 liters of any gas at 273.15K and 1atm

One mole of substance \equiv Avogadro number of substance molecules.

In 1811, hypothesized that equal volumes of gases contained equal number of molecules. N_{A} is a.k.a. Loschmidt's number. Josef Loschmidt and Jean Baptiste Jean Perrin gave increasingly accurate estimates of N_{A}

Energy : Main Entity in Physics and Chemistry

- Ability of therapeutics to affect bio molecules is defined and guided by energy balance.
- Energy ミ capacity to do work
- The kinetic energy, E_{k} of a body is the energy the body of mass \boldsymbol{m} possesses as a result of its motion at speed v is.

$E_{K}=1 / 2 m v^{2}$

- The potential energy, E_{p}, is a result of its position, composition or condition. Drugs: electrostatic energy, other interaction types,
- Only energy difference makes physical sense. For that reason the position at which the potential energy is zero is arbitrary (e.g. infinite separation of two charges).

Conservation of Energy

Kinetic Energy + Potential Energy
Movement (K) + Position (P)

$$
E_{\text {total }}=E_{K}+E_{P}
$$

- The total energy is conserved
- The total energy can be changed Work = Force • Distance
- What happens when a cannon ball is dropped?
- Temperature is the average energy of random molecular movements per degree of freedom

Seeking a minimum of energy

- Every mechanical system with dissipation seeks to achieve a minimum of potential energy within constraints

Energy Units

- The SI units: kilogram, meter, second
- The SI unit for energy is Joule.

$$
\mathrm{J}=\mathrm{kg} \mathrm{~m} \mathrm{~m}^{2} \mathrm{~s}^{-2} \quad\left(E_{K}=1 / 2 m v^{2}\right)
$$

- Calories are also used as a measure of energy. One calorie is the energy needed to increase the temperature of 1 gram of water by $1^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& 1 \mathrm{cal} \approx 4.184 \mathrm{~J} \\
& 1 \mathrm{kcal} \approx 4.184 \mathrm{~kJ}
\end{aligned}
$$

(beware of the food Calories!)

- Electron-volts (eV):
$1 \mathrm{eV}=1.602176565 \times 10^{-19}$ Joules

James Prescott Joule 1818-1889

English physicist and brewer

Temperature : Energy Equipartition in thermal equilibrium

- Absolute temperature is a measure of energy per degree of freedom
- Every excited degree of freedom of one molecule in a mixture carries energy is proportional to the Absolute temperature (Kelvin, K)

$$
e_{D F}=1 / 2 k_{B} T
$$

- For $\mathrm{N}_{\mathrm{A}}=6 \cdot 10^{23}$ molecules,

$$
\mathrm{E}_{\text {mole_of_DF }}=1 / 2 \mathrm{RT}
$$

- R is the universal gas constant

William Thomson, Lord Kelvin 1824-1907 UK In 1821 wrote "On an Absolute Thermometric Scale". Coined the term "thermodynamics"

Counting Degrees of Freedom

- For Molecules in Gas:
- External DF: 6=3+3
- 3 one atom, 5 for linear
- Internal: from 0 to $3 \mathrm{Nat}_{\mathrm{at}}-6$
- Vibrations: One vibration = Two DFs
- Bond length
- Bond angle
- Torsion angle

- Vibrational DF may not be excited at room temperature
- More DFs are excited as temperature increases to reach a limit of 3 N potential and 3 N kinetic degrees of freedom in a crystal

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases

Gas Constant and Kinetic Energy of a Molecule

- $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
- Mnenonic device: 8. π

$$
\mathrm{R}=1.9872 \sim 2 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

- For 3 translational degrees of freedom of movement of one atom in a gas:
$E_{\text {one atom in gas }}[J]=3 / 2 \mathbf{k}_{\mathrm{B}} \mathbf{T}=\mathbf{2 . 1 0} \mathbf{1 0}^{-23}[\mathrm{~J} / \mathrm{K}] \mathrm{T}[\mathrm{K}]$
$\mathrm{E}_{\text {one mole }} \quad[\mathrm{J}]=3 / 2 \mathrm{R} \quad \mathrm{T}=\left(1.5^{*} 8.314\right)[\mathrm{J} / \mathrm{K}] \mathrm{T}[\mathrm{K}]^{\sim 13 T}$

Temperature units, k_{B} and R

- Kelvin (K): $273.15+{ }^{\circ} \mathrm{C}$
- Celsius: ${ }^{\circ} \mathrm{C}=\mathrm{K}-273.15$
(freezing and boiling temperatures of water are 0 . and 100. , body temperature $36.6^{\circ} \mathrm{C}$)
- Fahrenheit : ${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \cdot 1.8+32$.
(human body temperature is 98.6 , fever $100^{\circ} \mathrm{F}$)
- We will work only in ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{K}$
- $\mathrm{k}_{\mathrm{B}}=1.3810^{-23} \mathrm{~J} / \mathrm{K}$
- $R=k_{B} N_{\text {Avogadro }}$
- $R=8.314 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$

Temperature defines internal energy of

molecules

The mean energy of one mole of vibrations is $\mathbf{R} \mathbf{T}_{\text {Kelvin }}$

RT at 300 K

$0.6 \mathrm{kcal} / \mathrm{mol}$

$2.5 \mathrm{~kJ} / \mathrm{mol}$

$1 / 2$ RT - thermal energy (kinetic,potential) per mole of one degree of freedom RT - in drug binding (or rate) constants all energies are divided by RT 3 ($1 / 2$ RT) - thermal energy of translational movement of a molecule

Energy Scale

Energy in Joules or calories per mole of events

- $2.5 \mathrm{~kJ} \quad 0.6 \mathrm{kcal}$ one vibration at 300 K
- 20-30 kJ $5-10 \mathrm{kcal}$ Protein unfolding
- $40-60 \mathrm{~kJ} \quad 10-15 \mathrm{kcal}$ nanomolar drug binding
- 160-320 40-80 kcal visible light photons
- 300-700kJ 70-150kcal breaking a chemical bond
- 510 M kJ 120 M kcal alpha-particle. Polonium-210 has a half-life of 138 days and a decay alpha particle energy of 5.3 MeV .
- Reminder: $1 \mathrm{kcal}: 1 \mathrm{~kg}$ of water by $1^{\circ}, 1$ bagel $=150 \mathrm{kc}$

- Energy of 1 particle is $\mathrm{E} / \mathrm{N}_{\mathrm{A}}$

SI and PChem Units

Review

- SI units for length: meter
- Smaller units: Å, nm, $\mu \mathrm{m}$
- Sizes of drugs, proteins, membrane, cells
- Mole, Avogadro (6): N_{A} ~ 6 10^{23}
- Kinetic energy $=1 / 2 \mathbf{m v}^{\mathbf{2}}$
- Conservation of energy
- Equipartition \& absolute T
- 1 mole (ie N_{A}) of degrees of freedom carries $1 / 2 R T$, (1 has $1 / 2 k T$)
- Temperature: $1 / 2 \mathrm{mv}^{2}=3 / 2$ RT
- Celsius (273.15) and Fahrenheit
- Energy units: J, cal, kcal, Cal, eV
- Gas constant (8. π) 8.314 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
- Boltzmann constant $\left(R / N_{A}\right)$
- RT at room temperature $0.6 \mathrm{kcal} / \mathrm{mol} \& 2.5 \mathrm{~kJ} / \mathrm{mol}$
- Energies of drug binding, photon, unfolding
- 1 calorie $=4.184$ Joules

