Week 3 problem solving
+ equations, + applications
S and G
Entropy and Gibbs Free Energy
Classical definition of $\Delta S = q/T$

- **Problem**: A calorimeter measured heat of 120J absorbed by a drug specimen while T increased from 300K to 304K. What is the approximate entropy change during that process?
 - 8 kcal/K
 - 36 kJ K
 - 0.4 J/K
 - 2.5 SI units of entropy

- **Solution 1**: $\Delta S = q/T = 120J/300K = 0.4$ J/K
- **Or**: $\Delta S = C_p \ln(T_2/T_1)=C_p \ln(1+\Delta T/T) \approx C_p(\Delta T/T)=(q/\Delta T) (\Delta T/T)=q/T$
- **Answer**: 0.4 J/K
Micro-definition of $S_m = k \ln (N) = R \ln (n)$

Problem: One mole of molecules can exist in 10^{N_A} distinct equiprobable states under the given temperature and pressure conditions (here N_A is the Avogadro number, 6×10^{23}). Estimate the entropy of the system.

- 19 kJ/K
- 183 J/K
- -5 J/(K mol)
- 85 kJ/K
- -2 J/K

Solution:
- Boltzmann definition: molar entropy equals $S = k \ln N = R \ln n$, where n is the number of states of a single molecule
- 10^{N_A} states for a mole \Rightarrow 10 states for a single molecule
- $S = 8.314 \times \ln 10 = 19$ J/K

Hint: $\ln 10 \sim 2.3$
Kirchhoff’s Law: entropy vs T

Problem: The standard entropy of formation of a compound at 0°C equals 150 J/(mol·K), and at 100°C 200 J/(mol·K). Which expression best approximates the molar heat capacity of this compound in the 0-100°C temperature range, in J/(mol·K) (assume \(C_p \) is constant)?

- \(C_p = \frac{50}{100} \)
- \(C_p = 50 \times 100 \)
- \(C_p = \frac{50}{\ln 1.37} \)
- \(C_p = 50 \times \ln 1.37 \)
- \(C_p = \frac{50}{\ln 100} \)
- \(C_p = 50 \times \ln 100 \)

Solution:

- Using Kirchhoff's Law, \(\Delta S = C_p \ln \left(\frac{T_2}{T_1} \right) \)
- \(C_p = \frac{(200-150) \text{(mol K)}}{\ln(373/273)} = \frac{50}{\ln 1.37} \text{ [J/(mol K)]} \)
Entropy upon protein-ligand binding depends on ligand movement and water shell changes

- Binding of anti-HIV drugs (HIV protease inhibitors) to their target (entropy contribution to ΔG is $-T\Delta S$, ΔS is entropy change upon binding):

<table>
<thead>
<tr>
<th>Generic name</th>
<th>ΔH (kcal/mol)</th>
<th>$-T\Delta S$ (kcal/mol)</th>
<th>ΔS (cal/mol·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelfinavir</td>
<td>3.1</td>
<td>-15.9</td>
<td>53.0</td>
</tr>
<tr>
<td>Indinavir</td>
<td>1.8</td>
<td>-14.2</td>
<td>47.3</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>1.2</td>
<td>-14.2</td>
<td>47.3</td>
</tr>
<tr>
<td>Tipranavir</td>
<td>-0.7</td>
<td>-13.9</td>
<td>46.3</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>-3.8</td>
<td>-11.3</td>
<td>37.7</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>-4.2</td>
<td>-10.1</td>
<td>33.7</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>-4.3</td>
<td>-9.4</td>
<td>31.3</td>
</tr>
<tr>
<td>Amprenavir</td>
<td>-6.9</td>
<td>-6.3</td>
<td>21.0</td>
</tr>
<tr>
<td>Darunavir</td>
<td>-12.7</td>
<td>-2.3</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Why ΔS of Nelfinavir/Viracept increases so much upon binding? This drug is relatively rigid and very hydrophobic, logP = 6!
Sign of Entropy and G Changes

<table>
<thead>
<tr>
<th>$\Delta G = -T\Delta S$</th>
<th>![Graph]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta S > 0$</td>
<td>More states \uparrow</td>
</tr>
<tr>
<td></td>
<td>• Melting</td>
</tr>
<tr>
<td></td>
<td>• Vaporization</td>
</tr>
<tr>
<td></td>
<td>• Heating</td>
</tr>
<tr>
<td></td>
<td>• Gas expansion</td>
</tr>
<tr>
<td></td>
<td>• Dissociation (= increase in the number of “particles”)</td>
</tr>
<tr>
<td></td>
<td>• Ideal mixing</td>
</tr>
<tr>
<td></td>
<td>• Dissolution (typically)</td>
</tr>
</tbody>
</table>

$\Delta S < 0$	Fewer states \downarrow
	• Freezing
	• Condensation
	• Cooling
	• Association (= decrease in the number of “particles”)
	• Crystallization (typically)
Gibbs Free energy, ΔG, has enthalpic and entropic components

- $\Delta G = \Delta H - T\Delta S$
- $\Delta H \equiv$ heat of reaction
 - $\Delta H = H(\text{products}) - H(\text{reactants})$
 - $\Delta H < 0$ means “\Rightarrow” is *exothermic* (produces heat)
 - $\Delta H > 0$ means “\Rightarrow” is *endothermic* (absorbs heat)
- $\Delta S \equiv$ reaction entropy
 - $\Delta S = S(\text{products}) - S(\text{reactants})$
 - $\Delta S > 0$ means “\Rightarrow” increases disorder (lower ΔG)
 - $\Delta S < 0$ means “\Rightarrow” increases order (higher ΔG)
Spontaneity: $\Delta G < 0$ (not ΔH or ΔS)

- **Problem:** The standard *entropy* of dissolution of sodium naproxen in water at 293 K equals 240 J/(mol·K). Will the drug spontaneously precipitate from a saturated solution at this temperature?

 - the result is unknown because entropy alone does not determine the direction of processes
 - the drug will precipitate because the crystallization enthalpy is negative
 - the drug will not precipitate because the dissolution entropy is positive
 - the drug will not precipitate because the system is at equilibrium

- **Answer:** Entropy, ΔS, alone does not determine the direction of processes, need to know $\Delta G = \Delta H - T\Delta S$
Gibbs free energy and spontaneity

Problem: An ice cube is taken from the freezer (-4°C) and placed in a cup with room temperature water (20°C), which initiates active melting. Which statement about molar Gibbs free energy, G_m, of the two phases is correct?

- G_m of water is equal to $T \times G_m$ of ice and entropy gain compensates the enthalpy loss
- G_m of water is equal to G_m of ice
- G_m of water is lower than G_m of ice
- G_m of water is higher than G_m of ice

Answer: Active spontaneous melting indicates negative ΔG, hence G_m of water is lower than G_m of ice
- Liquid is indeed the most stable phase of H_2O at 20°C and P=1atm
Binding of drugs to targets: spontaneous with negative ΔG

- Signs of molar ΔH_{bind} and ΔS_{bind} may vary
- $\Delta G_{bind} = \Delta H_{bind} - T\Delta S_{bind}$ is always negative
 - Otherwise they would not be drugs
 - Typically -12 to -15 kcal/mol

<table>
<thead>
<tr>
<th>Generic name</th>
<th>ΔG (kcal/mol)</th>
<th>ΔH (kcal/mol)</th>
<th>$-T\Delta S$ (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelfinavir</td>
<td>-12.8</td>
<td>3.1</td>
<td>-15.9</td>
</tr>
<tr>
<td>Indinavir</td>
<td>-12.4</td>
<td>1.8</td>
<td>-14.2</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>-13</td>
<td>1.2</td>
<td>-14.2</td>
</tr>
<tr>
<td>Tipranavir</td>
<td>-14.6</td>
<td>-0.7</td>
<td>-13.9</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>-15.1</td>
<td>-3.8</td>
<td>-11.3</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>-14.3</td>
<td>-4.2</td>
<td>-10.1</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>-13.7</td>
<td>-4.3</td>
<td>-9.4</td>
</tr>
<tr>
<td>Amprenavir</td>
<td>-13.2</td>
<td>-6.9</td>
<td>-6.3</td>
</tr>
<tr>
<td>Darunavir</td>
<td>-15</td>
<td>-12.7</td>
<td>-2.3</td>
</tr>
</tbody>
</table>
Using equation $\Delta G = \Delta H - T\Delta S$

Problem: Lopinavir binding to HIV protease at 25°C is characterized by 1:1 stoichiometry, molar ΔG of -15.1 kcal/mol and molar ΔH of -3.8 kcal/mol. How does molar entropy change in the binding process?

- Decreases by 37.9 cal/(K mol)
- Increases by 37.9 cal/(K mol)
- Decreases by 11.3 cal/(K mol)
- Increases by 11.3 cal/(K mol)
- Remains unchanged
- Impossible to tell

Solution:

- $-T\Delta S = \Delta G - \Delta H = -11.3$ kcal/mol (entropy in favor of binding)
- $T\Delta S = 11.3$ kcal/mol > 0 $\Rightarrow \Delta S > 0$
- $\Delta S = 11.3$ kcal/mol / 298 K = 37.9 cal/(K mol)
Phase transitions: pure substances

\[\Delta G_{trs} = 0 \]
\[\Delta H_{trs} = T_{trs} \Delta S_{trs} \]

- **Triple point** – 3 equally stable phases
- Normal \(T_{boiling} \) and \(T_{freezing} \) are where \(P = 1 \text{ atm} \) intersects the s/l and l/g boundaries
Equilibrium phase transition

- **Problem:** ... The melting temperature of 1:3 mixture of Estradiol-Norethindrone is 25°C, and the crystallization enthalpy at this temperature is -8 kJ/mol. Which number is closer to the crystallization entropy at 25°C?

 - 25 kcal/mol K
 - 2.3 cal/mol K
 - 0.1 cal/K
 - -27 J/(mol K)
 - -90 J/K

- **Answer:** Phase transition at equilibrium:

 - $\Delta G_{trs} = 0$, so $T\Delta S_{trs} = \Delta H_{trs}$
 - $\Delta S_{trs} = \Delta H_{trs}/T \approx -8 \text{ kJ/mol} / 298 \text{K} \approx -27 \text{ J/(mol K)}$
 - Crystallization entropy is negative, disorder ↓