Multi-Target Pharmacology of Drugs

What is an intended drug target?

What is the real pharmacology?

Implications for
 drug discovery
 drug repurposing
 beneficial effects
 adverse effects
 mutations & drug resistance
Die ZauberKugel

Magic Bullet, from a bullet that kills a specific invading microbe (eg Salvarsan vs syphilis) to a specific agent specific to a target
Protein-Ligand Binding

- Compound (ligand) binds to its target in 1:1 stoichiometry

- **Association Reaction:** \(P + L \rightleftharpoons PL \)

- \(K_a = [PL] / [P][L] \) (association constant, binding constant, affinity constant, binding affinity…, \(M^{-1} \))

- \(K_d = [P][L] / [PL] \) (dissociation constant, \(M \)) = \(1/K_a \)

- \(\Delta G_{bind} = -RT \ln K_a \quad \text{AND} \quad \Delta G_{bind} = RT \ln K_d \)

- \(K_d \) unit is \(M \) (moles/Liter)

- Other \(K_d \) units:
 - Milli (10\(^{-3}\)): mM, or
 - Micro (10\(^{-6}\)): \(\mu M \) / \(\mu M \)
 - Nano (10\(^{-9}\)): nM
 - Pico (10\(^{-12}\)): pM
 - Femto (10\(^{-15}\)): fM
Fraction of drug-bound targets depends on \([D]\) and \(K_d\)

- **Bosutinib** targets
- Notations: \(T\) and \(D\), a.k.a. \(P\) and \(L\)
- \(pK_d = -\log_{10}(K_d)\)
- \(pD = -\log_{10}([D])\)

Bound target fraction

\([TD]/[T] = [D]/K_d\)

If we assume that \(D_0 \gg T_0\), therefore

\([D_0] - [TD] \approx [D_0]\), then

\([TD]/[T_0] \approx D_0/(K_d + D_0)\)

Example: **Bosutinib/Bosulif**

“BCR-ABL & SRC kinase inhibitor” for chronic myelogenous leukemia

Actual Pharmacology is shown below
Derivation of the bound fraction equation

• Convenient notations for the derivation:
 – k is K_d, c is [PL] complex concentration
 – d is unbound drug or ligand, total drug is $d+c$
 – t is unbound target; total target is $t+c$

• Derivation:
 – Definition of K_d: $k = td/c$, therefore $t/c = k/d$
 – Bound fraction is $f = c/(t+c)$, $1/f = (t+c)/c = (t/c) + 1$
 – Substituting t/c for k/d: $1/f = k/d + 1 = (k+d)/d$
 – From $1/f$ to f: $f = d/(k+d)$
 – Drug is at high concentration and free d is close to $[D_0]$
 – Back to the main notation: $f = [PL]/[P_0] = [D_0]/(K_d + [D_0])$
Target Map of **Imatinib**: Target Expression, Drug-resistant **Mutants**
Example of a protein-ligand binding problem, from K to ΔG

$$\Delta G^0 = -RT \ln K$$

- In the solution at equilibrium, the concentrations of unbound drug and protein are 13.5 nM and 0.5 nM, respectively, while the concentration of protein/drug complex is 4.5 nM. Find ΔG^0_b binding.

- **Solution:**
 - Reaction: $P + L \rightleftharpoons PL$
 - $K_d = [P][L] / [PL] = 13.5 \times 10^{-9} \times 0.5 \times 10^{-9} / (4.5 \times 10^{-9}) = 1.5 \text{ nM}$
 - $K_a = 1 / (1.5 \times 10^{-9}) \sim 0.67 \times 10^9 \text{ M}^{-1}$
 - $\Delta G^0 = -RT \ln K_a = RT \ln K_d$
 - $\Delta G^0 = 0.6 \times (-9 \ln 10 + \ln 1.5) \approx -12.19 \text{ kcal/mol}$

- **Answer:** $\Delta G^0_b \approx -12.19 \text{ kcal/mol}$
Shortcut: K vs ΔG, and K_2/K_1 to $\Delta\Delta G$

- $K_2 / K_1 = 10$

\[
\Delta G^0 = -RT \ln K
\]

- $\Delta\Delta G = \Delta G_2 - \Delta G_1 = -RT \ln K_2 + RT \ln K_1 = -RT \ln (K_2 / K_1)$

- $\Delta\Delta G = \Delta G_2 - \Delta G_1 = -0.6 \ln 10 \approx -0.6 \times 2.3 \approx -1.4 \text{ kcal/mol}$

- K increases by a factor of 10 when ΔG decreases by 1.4 kcal/mol

- For example: correspondence between ΔG and K_d for protein/ligand binding:

<table>
<thead>
<tr>
<th>$\Delta G \text{ bind}$ $[\text{kcal/mole}]$</th>
<th>K_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.14</td>
<td>1 mM</td>
</tr>
<tr>
<td>-8.23</td>
<td>1 μM</td>
</tr>
<tr>
<td>-12.43</td>
<td>1 nM</td>
</tr>
<tr>
<td>-16.58</td>
<td>1 pM</td>
</tr>
<tr>
<td>-20.72</td>
<td>1 fM</td>
</tr>
</tbody>
</table>
Problem: Protein/drug binding, using K to ΔG shortcut

• A drug candidate was chemically optimized to reduce the therapeutic concentration 1000 times. Estimate the binding energy improvement required to reach that goal.

• **Solution:**
 • 10-fold Kd improvement \equiv 1.4 kcal/mol decrease in ΔG
 • 100-fold Kd improvement \equiv 2.8 kcal/mol decrease in ΔG
 • 1000-fold Kd improvement \equiv 4.2 kcal/mol decrease in ΔG

• **Answer:** The binding energy needs to be decreased by 4.2 kcal/mol.
Protein-ligand binding: concentrations vs drug-bound target fraction

Problem: In the solution at equilibrium, the concentrations of unbound drug and protein are 13.5 nM and 0.5 nM, respectively. Given the K_d of 1.5 nM, estimate the fraction of total protein which is bound (the binding reaction has 1:1 stoichiometry).

Solution:

- Reaction: $P + L \rightleftharpoons PL$, Dissociation: $PL \rightleftharpoons P + L$
- $K_d = [P][L] / [PL] = 1.5 \times 10^{-9}$ M
- $[PL] = [P][L] / K_d = 0.5 \times 10^{-9} \times 13.5 \times 10^{-9} / (1.5 \times 10^{-9}) = 4.5 \times 10^{-9}$ M = 4.5 nM
- $[P_0]$: Unbound protein 0.5 nM, bound protein 4.5 nM, total $[P_0]$ = 5 nM
- Fraction bound = $[PL] / [P_0] = 4.5 / 5 = 90\%$

Answer: 90\% of the protein is bound.
Protein-Ligand Binding Equilibration

- Simplest case, 1:1 binding stoichiometry. \(P + L \rightleftharpoons PL \)
- Full equation: \([PL] \) defined as \(x \)
 - At equilibrium, \(K_d = [P][L] / [PL] \) \(\Rightarrow \)
 - \(x \times K_d = (P_0 - x)(L_0 - x) \)
 - \(x \times K_d = x^2 - (P_0 + L_0)x + P_0L_0 \)
 - \(x^2 - (P_0 + L_0 + K_d) \times x + P_0L_0 = 0 \) - quadratic equation
 - \(a = 1; \ b = - (P_0 + L_0 + K_d); \ c = P_0L_0 \)
 - Solve \(ax^2 + bx + c = 0 \)

<table>
<thead>
<tr>
<th>Start (no equilibrium)</th>
<th>Protein ([P] = P_0)</th>
<th>Ligand ([L] = L_0)</th>
<th>Complex (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibration</td>
<td>Protein ([P] = P_0 - x)</td>
<td>Ligand ([L] = L_0 - x)</td>
<td>Complex ([PL] = x)</td>
</tr>
</tbody>
</table>
Equilibrium [PL] as a function of total ligand, target and K_d

- Given a test tube with the initial protein concentration P_0, how much complex is formed upon addition of L_0 (concentration) of ligand with a given K_d?

$$x = L_{\text{bound}} = P_{\text{bound}} = \frac{P_0 + L_0 + K_d - \sqrt{(P_0 + L_0 + K_d)^2 - 4P_0L_0}}{2}$$
Example: bound fraction at equilibrium

- 0.30 µM of protein is mixed with 0.36 µM of drug. The dissociation constant is $K_d = 0.01$ µM. Evaluate the bound protein concentration after the system equilibrates.

- Solution:

 \[
 x^2 - (P_0 + L_0 + K_d) \times x + P_0L_0 = 0 - \text{quadratic}
 \]

 Assuming that x, P_0, L_0, and K_d are all measured in the same units (e.g. µM), we can cancel out the prefix factor (e.g. 10^{-6})
Example continued

- \(a = 1 \)
- \(b = -(0.30+0.36+0.01) = -0.67 \)
- \(c = 0.30 \times 0.36 = 0.108 \)
- Solve \(ax^2 + bx + c = 0 \)
- \(x = (-b \pm \sqrt{b^2 - 4ac}) / 2a = 0.27 \text{ \(\mu\)M or 0.40 \text{ \(\mu\)M} \)
- \(x \) cannot exceed \(P_0 \) or \(L_0 \), so \(x = 0.27 \text{ \(\mu\)M} \) (use the solution with \(-\))

<table>
<thead>
<tr>
<th></th>
<th>Protein</th>
<th>Ligand</th>
<th>Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start (no equilibrium)</td>
<td>([P] = 0.3 \text{ (\mu)M})</td>
<td>([L] = 0.36 \text{ (\mu)M})</td>
<td>0</td>
</tr>
<tr>
<td>Equilibration</td>
<td>([P] - x = 0.03\text{(\mu)M})</td>
<td>([L] - x = 0.09\text{(\mu)M})</td>
<td>(x = 0.27\text{(\mu)M})</td>
</tr>
</tbody>
</table>

- And, BTW, \((0.03\text{\(\mu\)M} \times 0.09\text{\(\mu\)M}) / 0.27\text{\(\mu\)M} = 0.01 \text{ \(\mu\)M} = Kd \)

- **Answer:** 0.27\text{\(\mu\)M}
Total protein vs K_d:

K_d = [P][L] / [PL]

Two common cases

1. $[P_{\text{total}}] << K_d$
 $\implies [P] << K_d$
 $\implies [P] / K_d << 1$
 $[PL] << [L]$
 - Ligand is **not depleted** by binding to the protein target
 - True for **most biological targets** in vivo

2. $[P_{\text{total}}] > K_d$
 $\implies [P] \sim K_d$
 $\implies [P] / K_d \sim 1$
 $[PL] \sim [L]$
 - Ligand is **depleted** by binding to the protein target
 - True for *albumin, antitrypsin* and other abundant plasma proteins
 - Only unbound fraction exhibits pharmacological action.
[Target] $< \text{K}_d < \text{[Ligand]}$

- $P_{\text{total}} \ll \text{K}_d$ and $[\text{PL}] \ll [\text{L}]$
- $[\text{L}_{\text{total}}] \approx [\text{L}]$
- Target bound/unbound ratio (from definition of K_d):
 \[
 [\text{PL}] / [\text{P}] = [\text{L}] / \text{K}_d \approx [\text{L}_{\text{total}}] / \text{K}_d
 \]
- When $[\text{L}_{\text{total}}] \approx \text{K}_d$, $[\text{PL}] = [\text{P}]$, i.e.
 \[
 \text{K}_d \text{ is the ligand concentration at which 50% target is bound.}
 \]
- Similarly, $[\text{L}_{\text{total}}] \approx \text{K}_d \times [\text{PL}] / [\text{P}]$ for any bound/unbound ratio.
- Fraction of bound receptor:
 \[
 [\text{PL}] / [\text{P}_{\text{total}}] \approx [\text{L}_{\text{total}}] / (\text{K}_d + [\text{L}_{\text{total}}])
 \]
Example: \([\text{total Lig}] \approx ([\text{PL}] / [\text{P}]) \times K_d\)

- The concentration of the target protein in the patient’s body is 5 pM. Given a drug with \(K_d\) of 10 nM, what concentration of the drug is needed for 80% of the protein to be bound?

- **Solution:**

 \[[\text{P}] \ll K_d \]

 Desired \([\text{PL}] / [\text{P}]\) ratio is 80/20 = 4/1

 Total ligand = \([\text{PL}] / [\text{P}] \times K_d \approx 40\text{nM} \]

 Another solution: **bound target fraction** is \(0.8 = x / (x + K_d)\), \(x=40\text{nM}\)

- **Answer:** \(\approx 40\text{nM} \)

- **Note:** if \(K_d\) is 10 nM, we need 90 nM drug for 90% bound protein, and 190 nM for 95% bound protein

- **Dose:** 90 nM for 500g/mole drug and 30L corresponds to 1.35mg dose
Case of high protein concentration

• $P_{\text{tot}} > K_d$; $[PL]$ is proportional to $[L]$

• If protein is in excess, i.e. $[PL] \ll [P]$ and $[P_{\text{tot}}] \approx [P]$

• Ligand bound / unbound ratio (from definition of K_d):

\[
\frac{[LP]}{[L]} = \frac{[P]}{K_d} \approx \frac{[P_{\text{tot}}]}{K_d}
\]

• $[P_{\text{tot}}] / K_d$ defines bound/unbound ratio for the ligand

• *Bound ligand fraction* $= \frac{[P_{\text{tot}}]}{([P_{\text{tot}}] + K_d)}$
High affinity drug-albumin binding

• Problem: K_d (Albumin, warfarin) is $\sim5\ \mu$M, calculate drug fraction found to albumin in %, assuming albumin in physiological range or 35 to 50 g/L. MM = 66.5 kDa

• Solution:
 • $[P_{\text{tot}}] / ([P_{\text{tot}}] + K_d)$
 • with albumin concentration at 526 μM: $526 / 531 \sim 99.05\%$
 • with albumin concentration at 752 μM: $752 / 757 \sim 99.34\%$

• Note: unbound warfarin varies between 0.66% and $\sim0.95\%$, i.e. 43% increase for a skinny fasting person

• For drugs with high plasma protein binding, small changes in plasma protein can dramatically affect free drug concentration.
Low affinity drug-albumin binding

- **Example:** K_d (Albumin, drug B) is ~5 mM, calculate albumin binding in %, assuming albumin concentration is in a physiological range of 450 to 750 μM.

- **Solution:**
 - $f = \frac{\text{[P}_{\text{tot}]}}{\left[\text{P}_{\text{tot}}\right] + K_d}$
 - with albumin concentration at 450 μM: $f = 450 / 5450 \sim 8.3$
 - with albumin concentration at 750 μM: $f = 750 / 5750 \sim 13$

- **Unbound** drug B (1-f, or 100-$f[\%]$) varies between 87% and 91.7%, only 5.5% increase for a skinny fasting person

- Variations of plasma concentrations of unbound drug B are not so dramatic.